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SUMMARY

Somatic progenitors suppress differentiation to
maintain tissue self-renewal. The mammalian SWI/
SNFchromatin-remodeling complex regulates nucle-
osome packaging to control differentiation in embry-
onic and adult stem cells. Catalytic Brg1 and Brm
subunits are required for these processes; however,
the roles of SWI/SNF regulatory subunits are not fully
understood. Here, we show that ACTL6a/BAF53A
modulates the SWI/SNF complex to suppress differ-
entiation in epidermis. Conditional loss of ACTL6a re-
sulted in terminal differentiation, cell-cycle exit, and
hypoplasia, whereas ectopic expression of ACTL6a
promoted the progenitor state. A significant portion
of genes regulated by ACTL6a were found to also
be targets of KLF4, a known activator of epi-
dermal differentiation. Mechanistically, we show
that ACTL6a prevents SWI/SNF complex binding to
promoters of KLF4 and other differentiation genes
and that SWI/SNF catalytic subunits are required for
full induction of KLF4 targets. Thus, ACTL6a controls
the epidermal progenitor state by sequestering SWI/
SNF to prevent activation of differentiation programs.

INTRODUCTION

Homeostasis of somatic tissues requires a sustainable pool of

progenitor cells that can both proliferate to replenish themselves

and enter a differentiation pathway to enable their progeny to

perform specified tissue functions, such as barrier formation in

epidermis. Maintenance of this progenitor state requires tight

suppression of differentiation genes, because their premature

expression can abolish proliferative capacity and trigger cell

death (Melino et al., 1994). In the case of the epidermis, a strati-

fied epithelial tissue in which basement-membrane-adherent

progenitors migrate outward to undergo terminal differentiation,

several epigenetic regulators have recently been found to con-

tribute to differentiation gene repression in progenitors. Among

these are DNA methyltransferase 1 (DNMT1) (Sen et al., 2010);

histone methylation regulators that include JMJD3, Setd8,

CBX4, Jarid2, and Polycomb proteins (Driskell et al., 2012;

Ezhkova et al., 2009; Luis et al., 2011; Mejetta et al., 2011; Sen
Ce
et al., 2008); and regulators of histone acetylation, HDAC1,

HDAC2, and Sin3a (LeBoeuf et al., 2010; Nascimento et al.,

2011; Reyes et al., 1998). These studies point to a role for epige-

netic regulators from multiple classes in the repression of differ-

entiation gene induction within somatic progenitor cells.

Among classes of epigenetic regulators, chromatin remodel-

ing complexes are commonly composed of a catalytic adenosine

triphosphatase (ATPase) subunit, which utilizes the energy from

ATP tomove or eject DNA-bound nucleosomes, alongwith regu-

latory subunits thatmodulate the conformation and activity of the

entire complex. The mammalian SWI/SNF chromatin-remodel-

ing complex is composed of 11 subunits encoded by 20 genes

(Wu et al., 2009). Its catalytic ATPase subunit is either Brg1 or

Brm. Brg1 is required during embryonic development, whereas

Brm seems to be dispensable (Bultman et al., 2000; Reyes

et al., 1998). Compared to Brg1 and Brm, there are fewer data

on the function of the 18 genes that encode the regulatory

subunits of the SWI/SNF complex. It is notable, however, that

mice with loss of either BAF250a or BAF155 display an even

more severe phenotype than that of Brg1 knockout (KO) mice

(Gao et al., 2008; Kim et al., 2001), indicating that these regula-

tory elements may mediate critical biological functions.

In addition to classical epigenetic regulators, recent studies

reveal that many proteins long considered components of the

cytoskeleton can actually impact transcription (Grummt, 2006).

Various types of lamins directly interact with chromatin and orga-

nize the nuclear landscape (Dechat et al., 2008). Nuclear myosin

associates with RNA polymerases I and II (Vreugde et al., 2006;

Ye et al., 2008), whereas nuclear actin copurifies with all three

known RNA polymerases and multiple epigenetic regulating

complexes (Visa and Percipalle, 2010). In addition, multiple

actin-like genes, conserved from yeast to human, associate

with different epigenetic regulators. It remains unclear whether

these actin-like genes are required in the gene-regulatory control

of progenitor differentiation.

In a search for epigenetic repressors of differentiation that are

required for epidermal progenitor maintenance, we identified

ACTL6a (actin-like 6a), a protein also known as BAF53a/

INO80K/Arp4. Here, we show that ACTL6a expression is signif-

icantly downregulated during epidermal differentiation. Condi-

tional deletion of ACTL6A in mouse epidermis abolished

epidermal progenitor function, leading to cell-cycle exit, terminal

differentiation, and ultimately hypoplasia, followed by tissue

loss. In the human context, ACTL6a depletion exerts similar

effects, decreasing progenitor clonogenicity and inducing
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Figure 1. ACTL6a Is Downregulated during

Epidermal Differentiation

(A) Heat map representing mRNA profiling analysis

of all known actin-like genes comparing their ex-

pression between undifferentiated (�) and calcium-

differentiated (+) human keratinocytes in vitro.

(B) ACTL6a mRNA downregulation during kerati-

nocyte differentiation in vitro (p < 0.001, ANOVA).

Bars represent mean ± SD.

(C) ACTL6a mRNA levels from human epidermal

laser-capture microdissection of the undifferenti-

ated progenitor-containing basal layer and differ-

entiating suprabasal layers (p < 0.05, t test). Bars

represent mean ± SD.

(D) ACTL6a protein downregulation during kerati-

nocyte differentiation in vitro.

(E) ACTL6a protein localizes primarily to less differ-

entiated layers in human epidermal tissue in vivo

(ACTL6a, green; collagen (COL) VII basement-

membrane marker, red; nuclear stain with Hoechst

33342, blue; scale bar represents 50 mm; dotted

line indicates epidermal tissue upper boundary).

See also Table S2.
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ectopic expression of differentiation genes, whereas enforced

ACTL6a expression suppressed differentiation. ACTL6a target-

gene characterization identified KLF4 (Krüppel-like factor 4) as

a key target of ACTL6a repression. KLF4 loss significantly

compensated for the defects caused by ACTL6a depletion in

progenitors. Of the three epigenetic regulatory complexes well

characterized as containing ACTL6a, namely the TIP60 and

KAT2a histone acetyltransferase (HAT) complexes and the

SWI/SNF chromatin-remodeling complex, only depletion of the

ARID1A/BAF250a member of the Brg1- or Brm-containing

SWI/SNF complex recapitulated ACTL6a effects. Consistent

with a role for ACTL6a in regulating SWI/SNF impacts on progen-

itor gene regulation, ACTL6a was necessary for impairment of

Brg1 or Brm binding to differentiation-gene promoters. These

data suggest that ACTL6a maintains the undifferentiated

progenitor state by opposing SWI/SNF-enabled activation of

KLF4 and other epidermal differentiation genes.

RESULTS

ACTL6a Is Downregulated during Epidermal Tissue
Differentiation
Analysis of actin-like gene expression during calcium-induced

epidermal keratinocyte differentiation in vitro identified ACTL6a

as one of the most downregulated actin-like genes (Figures 1A–

1C; Table S2available online). For examiningACTL6amessenger

RNA (mRNA) expression within intact epidermal tissue, laser-

capture microdissection was used for the separation of the

undifferentiated progenitor basal epidermal layer from the supra-

basal differentiating layers. In agreement with in vitro findings,

ACTL6a mRNA levels were decreased in differentiated layers

relative to the basal layer (Figure 1C). This mRNAdownregulation
194 Cell Stem Cell 12, 193–203, February 7, 2013 ª2013 Elsevier Inc.
was reflected in ACTL6a protein levels

as well, which also decreased during

differentiation (Figure 1D). Within intact

tissue, ACTL6a protein was likewise
most strongly expressed in less differentiated cells adjacent to

the epidermal basement membrane (Figure 1E). ACTL6a expres-

sion is thus downregulated in epidermal differentiation.

Conditional Epidermal ACTL6a Deletion Ablates
Progenitor Function
The downregulation of ACTL6a during epidermal differentiation

suggested the possibility that ACTL6a may impact this process.

To explore this, we undertook targeted ACTL6A deletion

in mouse epidermis using Cre recombinase driven by the

epidermal basal layer keratin 14 (K14) promoter (Huelsken

et al., 2001). We first undertook conditional ACTL6A deletion in

adult mouse epidermis using a K14-driven tamoxifen-inducible

Cre-estrogen receptor (Cre-ER) ligand domain fusion (Vasiou-

khin et al., 1999) (Figure S1A). Cre activation via topical tamoxifen

application to a small region of mouse back skin was followed

clinically by scaling, then thinning, ultimately leading to erosion

and loss of epidermis by day 16 (Figure 2A); this loss of surface

epithelium was also visible in the perioral area, where mice lick

the topical agent (Figure S1B). Over this time period, ACTL6a-

deleted tissue underwent progressive epidermal hypoplasia

(Figures 2B and 2C; Figure S1C) prior to a complete tissue failure.

In concert with this, loss of ACTL6a was associated with induc-

tion of both early (keratin 1) and late (loricrin) differentiation-

protein expression in the basement-membrane proximal basal

progenitor layer, where such proteins are normally never ex-

pressed (Figure 2D). A terminal deoxynucleotidyl transferase

dUTP nick end labeling (TUNEL) assay for apoptosis showed

no significant difference in the interfollicular epidermal tissue

between KO and control animals (Figure S1D); however, there

was a profound loss of proliferation (Figures 2D and 2E; Figures

S1F and S1H). We have further investigated the function of



Figure 2. Conditional Epidermal ACTL6a Deletion Ablates Progenitor Function

(A) Time-course images of ACTL6a conditional KO and heterozygous littermate control (HET) skin before (day 0) and after (day 8, day 16) tamoxifen induction of

Cre-ER-mediated ACTL6a deletion in mouse epidermis.

(B) Histology of mouse back skin sections from ACTL6a conditional KO and littermates over the same time period (scale bar represents 50 mm); note the

hypoplastic tissue collapse in KO epidermal tissue by day 16, after which point no epidermis could be detected.

(C) Quantification of average epidermal tissue thickness (n = 5). p < 0.0001, ANOVA. Bars represent mean ± SD.

(D) Differentiation-protein expression (Loricrin [LOR], green; Keratin 1 [KRT1], green) and Ki67 expression (orange); the dotted line denotes the basement

membrane. The arrowheads point out cells adjacent to the basement membrane expressing differentiation proteins in KO tissue.

(E) Mitotic indices calculated by the number of Ki67-positive cells per field in the indicated genotypes. p < 0.0001, ANOVA. Bars represent mean ± SD.

See also Figures S1 and S2.
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ACTL6a in embryonic epidermal tissue development using con-

stitutive K14-Cre. Similar to its effect in adults, loss of ACTL6a

during embryogenesis led to epidermal hypoplasia (Figures

S2B and S2D). Newborn ACTL6a KO animals die within only

a few hours after birth and are characterized by thin-appearing

skin with epidermal erosions and the induction of differentiation

proteins in the basal layer (Figures S2A andS2B),without a signif-

icant increase in apoptosis (Figure S2E). Consistent with areas of

epidermal erosion, the capacity of the epidermis to exclude dye

is also significantly impaired in newbornKOanimals compared to

their littermates (Figure S2A). ACTL6a deletion therefore leads to

proliferative failure and premature terminal differentiation, which

in turn leads to epidermal tissue loss in both embryonic develop-

ment and adult tissue homeostasis.

ACTL6a Is Required for Repression of Premature
Progenitor Differentiation
To further characterize the function of ACTL6a in epidermal

homeostasis, we performed mRNA expression profiling on

human epidermal keratinocytes treated with two independent

ACTL6a small hairpin RNAs (shRNAs) (Figure 3). In undifferenti-

ated keratinocytes, ACTL6a depletion altered a total of 467

differentiation genes (327 [70%] induced, 120 [30%] repressed;

Tables S3 and S4). ACTL6a-regulated genes displayed a signifi-

cant (p < 23 10�59, Fisher’s exact test) overlap of 267 geneswith

the published calcium-induced epidermal keratinocyte differen-

tiation profile (Sen et al., 2010), with most genes changing in the

same direction (Figure 3A). Genes that were upregulated in

undifferentiated keratinocytes by ACTL6a loss were significantly

enriched with gene oncology (GO) terms relevant to epidermal

differentiation (Figure 3B); no specific GO terms were highly

enriched in downregulated genes (Figure S3B). Dramatic dere-

pression of specific well-characterized differentiation genes

was confirmed with ACTL6a loss, at mRNA and protein levels

(Figures 3C–3E). These data confirm that, in addition to the

murine tissue context, ACTL6a is required for repression of dif-

ferentiation-gene expression in the human setting as well.

Consistent with a function for ACTL6a in maintaining the undif-

ferentiated progenitor state, ACTL6a loss impaired clonogenic

growth, with ACTL6a-depleted cells producing only an average

of 14% of the colonies (>1 mm2) seen with the control (Figures

3E–3G;FigureS3F).Wenext tested theeffectsof alteringACTL6a

function in organotypic human epidermal tissue, a setting that

accurately recapitulates spatial patterns of epidermal gene ex-

pression (Truong et al., 2006). With striking similarity to condi-

tional KOmouse epidermis, organotypic human epidermal tissue

displayed hypoplasia and ectopic differentiation occurring at the

normally undifferentiated basal layer (Figures 3H and 3I). Further

supporting the notion that ACTL6a represses differentiation to

maintain epidermal progenitor function, enforced expression of

ACTL6a in all layers of regenerating human epidermal tissue

impaired differentiation-gene expression (Figure 4; Figure S4A).

ACTL6a is thus required for sustaining epidermal self-renewal

and for preventing premature progenitor differentiation.

ACTL6a Represses Differentiation in Part through KLF4
To search for downstream targets through which ACTL6A

represses differentiation, we performed gene set enrichment

analysis (GSEA) using the ACTL6a gene set. A number of previ-
196 Cell Stem Cell 12, 193–203, February 7, 2013 ª2013 Elsevier Inc
ously characterized transcriptional activators of epidermal differ-

entiation were included among ACTL6a target genes, including

KLF4, GRHL3, PRDM1, and HOPX, all of which were significantly

upregulated by ACTL6A knockdown. When comparing the

genes regulated by these transcription factors, we found that

227 of the 467 genes within the ACTL6A-regulated gene set

(48.6%) are also regulated by KLF4 with a significant p value of

3.5 3 10�69. In contrast, only 8% of ACTL6a gene set is

regulated by GRHL3, PRDM1, and HOPX combined (Figures

5A–5C). This suggests that a significant portion of the genes

regulated by ACTL6a are also KLF4 targets.

In addition to its well known role in the embryonic stem cell

setting, the transcription factor KLF4 is also highly expressed in

differentiated layers of epidermal tissue, where it has been char-

acterized by targeted gene disruption as a critical and nonredun-

dant activator of differentiation (Jaubert et al., 2003; Segre et al.,

1999). Loss of ACTL6a in KO mouse epidermal tissue causes

derepression of KLF4 and dysregulation of KLF4 targets such

as CDSN (Figures 5D and 5E; Figures S2F and S5D). To validate

thegenetic interactionbetweenACTL6AandKLF4,weperformed

doubleRNAi studies to investigate the impact ofKLF4depletion in

the context of ACTL6a loss. KLF4 depletion effectively sup-

pressed the induction of differentiation genes caused by ACTL6a

loss, indicating thatKLF4 is required for thederepressionof differ-

entiation observed with ACTL6a loss (Figures 5F–5I; Figures S5B

andS5C). Therefore, bothbioinformatic andgenetic studies iden-

tify KLF4 as a downstream target through which ACTL6a exerts

a portion of its repression actions on differentiation.

ACTL6a Regulates Epidermal Homeostasis through the
SWI/SNF Complex
Recent studies suggest that ACTL6a can associate with different

epigenetic regulators, including the Tip60 HAT complexes, the

KAT2aHAT complexes, and the SWI/SNF chromatin-remodeling

complex (Park et al., 2002; Tea and Luo, 2011; Zhao et al., 1998).

To examinewhich complexmight be relevant to ACTL6a function

in this setting, we performed a loss-of-function analysis for key

functional components of each of these complexes. Depletion

of either KAT2a or Tip60 failed to significantly alter differentia-

tion-gene expression (Figures S6I and S6J and data not shown).

In contrast, depletion of the largest component of the SWI/SNF

complex, BAF250a/ARID1A, but not BAF250b/ARID1B, pro-

duced impacts similar to ACTL6a loss: decreased clonogenic

growth and premature induction of differentiation (Figures S6A–

S6H). ACTL6a shares a very similar distribution pattern in the

fast protein liquid chromatography (FPLC) fractions of undifferen-

tiated human keratinocyte cellular extractswith the catalytic sub-

unit (Brg1 or Brm) of the SWI/SNF complex (Figure S7A). In addi-

tion, overexpression of ACTL6a mutant M1 with K226/E227A

mutations that impair binding with Brg1 (Nishimoto et al., 2012)

also impaired the suppression of differentiation compared to

wild-type ACTL6a (Figures S4B–S4D). Taken together, these

results suggest that the function of ACTL6a in repressing progen-

itor differentiation may involve the SWI/SNF complex.

ACTL6a Loss Permits SWI/SNF Complex Binding to
Differentiation Genes
To explore the basis for the functional relationship between

ACTL6a and the SWI/SNF complex, we performed chromatin
.



Figure 3. ACTL6a Is Required for Repression of Differentiation

(A) Heat map (left) and Venn diagram (Rezai-Zadeh et al., 2003) illustrating the overlap between expression changes identified with ACTL6a loss and calcium-

induced differentiation (p < 2 3 10�59, Fisher’s exact test). Genes induced are colored in red, and repressed genes are colored in green.

(B) GO analysis demonstrating that ACTL6a loss induces differentiation-associated genes.

(C) qRT-PCR verification of array data showing mRNA levels of differentiation-associated genes during ACTL6a loss. Bars represent mean ± SD.

(D) Verification of ACTL6a knockdown by duplicate independent shRNAs. Bars represent mean ± SD.

(E) Immunoblots of ACTL6a-depleted keratinocytes demonstrating loss of ACTL6a protein as compared to empty vector controls.

(F) Clonogenic assays of human keratinocytes with ACTL6a RNAi or empty vector controls. p < 0.005, ANOVA.

(G) Colonies >1 mm2 in clonogenic assays are quantified (n = 2 per group). p < 0.001, ANOVA. Bars represent mean ± SD.

(H and I) Organotypic human epidermal tissue comparing ACTL6a loss with empty vector control for the K1 differentiation marker (H; green) and comparing

ACLT6a loss versus empty vector control for the K10 differentiation marker (I; red).

See also Figure S3 and Tables S3 and S4.
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immunoprecipitation (ChIP) analysis to examine Brg1 and Brm

binding to differentiation promoters as a function of ACTL6a.

Because ACTL6a expression is significantly downregulated
Ce
during human keratinocyte differentiation, we first compared the

localization of the SWI/SNF complex in undifferentiated human

keratinocytes with calcium-induced differentiated keratinocytes.
ll Stem Cell 12, 193–203, February 7, 2013 ª2013 Elsevier Inc. 197



Figure 4. ACTL6a Overexpression Suppresses Differentiation

(A) K1 differentiation marker (green) with enforced ACTL6a expression throughout the epidermis versus control. Note the decreased expanse of expression of K1

in less differentiated regenerating epidermal layers (brackets) in ACTL6a-overexpressing tissue compared to control.

(B) K10 expression comparing ACTL6a overexpression versus control.

(C) Quantification of differentiation markers K1 and K10 by percentage of relative thickness of K1- and K10-expressing cells in tissue sections (n = 5). p < 0.005, t

test. Bars represent mean ± SD.

(D) Quantification of K1 and K10 mRNA levels in tissue. p < 0.005, t test. Bars represent mean ± SD.

See also Figure S4.
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Compared to undifferentiated cells, differentiated keratinocytes

displayed enhancedbindingbySWI/SNF, aswell as byRNApoly-

merase II, at the promoters of differentiation genes, including

KLF4 as well as KRT10, S100A9, SPRR3, and BMP6 (Figures

6A and 6B). Moreover, depletion of ACTL6a in undifferentiated

progenitor populations enhanced the binding of both Brg1 and/or

Brm as well as RNA polymerase II to differentiation-gene

promoters but failed to alter binding to other gene promoters

(Figures 6C and 6D; Figures S7C and S7D). This suggests that

ACTL6a loss permits SWI/SNF to bind and activate differentiation

genes, a model that would predict that loss of Brg1 and Brm

SWI/SNF complex catalytic subunits would impair differentiation.

Consistent with this model, previously reported Brg1 and Brm

double KO mice displayed impaired epidermal differentiation-

gene induction and deficient tissue-barrier formation (Indra

et al., 2005). In agreement with these prior data, simultaneous

loss of both Brm and Brg1 by two independent sets of RNAi

sequences suppressed the expression of differentiation genes

in organotypic human epidermal tissue (Figures 6E and 6F).

This suppression of differentiation mediated by Brg1 and Brm

loss was also accompanied by suppression of the transcription

factor KLF4 (Figure 6G), indicating that intact SWI/SNF complex

function is required for full induction of KLF4 and epidermal

differentiation. Taken together, our data suggest a model in

which ACTL6a helps to maintain the undifferentiated progenitor

state by inhibiting SWI/SNF complex binding to and activation of

KLF4 and other differentiation-gene promoters (Figure 7).

DISCUSSION

Here, we present data indicating that ACTL6a is required for the

repression of epidermal progenitor differentiation, in part via
198 Cell Stem Cell 12, 193–203, February 7, 2013 ª2013 Elsevier Inc
suppression of KLF4, and that ACTL6a prevents SWI/SNF

complex binding to the promoters of KLF4 and other differentia-

tion genes. The necessity of SWI/SNF complex function in

induction of epidermal differentiation was confirmed by double

depletion of the Brg1 and Brm catalytic subunits, a loss-of-func-

tion experiment that confirmed that full KLF4 induction also

requires SWI/SNF action. Taken together, these data support

a hypothetical model in which ACTL6a sustains the epidermal

progenitor phenotype, at least in part, by preventing the SWI/

SNF complex from binding to and activating the expression of

differentiation genes.

Although recent studies demonstrate that ACTL6a can asso-

ciate with multiple epigenetic regulatory complexes, our data

indicate that the SWI/SNF complex may be most relevant to

ACTL6a action in this setting. Previous studies in various

systems suggest that, in addition to the SWI/SNF chromatin-

remodeling complex, ACTL6a can associate with HAT com-

plexes, including those containing Tip60 and KAT2a (Lee et al.,

2003; Tea and Luo, 2011). The majority of the previous functional

analysis on ACTL6a’s role during development has been in the

nervous system and only recently in the hemopoietic system

(Krasteva et al., 2012; Lessard et al., 2007; Yoo et al., 2009).

For Drosophila olfactory projection neuron dendrite targeting,

the ACTL6a homolog Bap55 functions through Tip60 histone

acetyltransferase (Tea and Luo, 2011). However, in vertebrates,

the switch of ACTL6a by its homolog ACTL6b in the SWI/SNF

complex is critical for the differentiation process of neural stem

cells (Lessard et al., 2007). The present studies in themammalian

epidermal setting indicate that the Tip60 histone acetyltransfer-

ase is not required for ACTL6a effects, whereasmultiple subunits

associated with the SWI/SNF complex, including BAF250a,

Brg1, and Brm, are actively involved in repressing differentiation
.



Figure 5. ACTL6a Suppresses Differentiation Partially by Repressing KLF4

(A) GSEA comparing the ACTL6a-controlled gene set (fold change >2) with the gene sets controlled by the known epidermal-differentiation-mediating tran-

scription factors whose expression levels changed with ACTL6a loss, including KLF4, GRHL3, PRDM1, and HOPX. Shared genes are indicated in dark blue.

(B) Bar graph comparing the percentage of shared gene numbers with the ACTL6a data set. KLF4 controls 48.6% of the ACTL6a gene set.

(C) Bar graph comparing the p values (�log-corrected p value) in the GSEA analysis.

(D) Staining of KLF4 in vivo in adult mice epidermis, comparing KO versus littermate HET controls on day 16 after initial tamoxifen treatment. KLF4 is induced on

the basal layer in KO mouse tissue.

(E) Staining of the KLF4 target, CDSN, comparing KO mouse tissue versus HET controls.

(F) Relative mRNA expression levels of KLF4 and ACTL6a in a double RNAi experiment using ACTL6a shRNA and KLF4 siRNA. p < 0.0001, ANOVA. Bars

represent mean ± SD.

(G) Relative mRNA expression of differentiation-associated genes with ACTL6a and KLF4 double RNAi. p < 0.0001, ANOVA. Bars represent mean ± SD.

(H) K1 staining (green) of human epidermal tissue sections from tissues with ACTL6a and KLF4 double RNAi compared to controls. Note the rescue of ACTL6a

tissue collapse by KLF4 depletion.

(I) K10 staining (red) of human epidermal tissue sections from tissues with ACTL6a and KLF4 double RNAi compared to controls.

See also Figure S5.
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Figure 6. ACTL6a Loss Facilitates SWI/SNF Complex Targeting to Differentiation Genes
(A) ChIP analysis of the Brg1 and Brm SWI/SNF complex components at differentiation-gene promoters, comparing undifferentiated and differentiated human

keratinocytes. p < 0.0001, ANOVA. Bars represent mean ± SD.

(B) ChIP analysis of RNA polymerase II at differentiation-gene promoters, comparing undifferentiated and differentiated human keratinocytes. p < 0.0001,

ANOVA. Bars represent mean ± SD.

(C and D) ChIP analysis of the SWI/SNF complex (C) and RNA polymerase II (D) enrichment at promoter regions of representative differentiation-associated genes

using undifferentiated human keratinocytes treated with shRNA against ACTL6a or control shRNA. p < 0.05, ANOVA. Bars represent mean ± SD.

(E) Brg1 and Brm double depletion using two independent sets of siRNAs inhibits differentiation in regenerating organotypic human epidermal tissue. K1, green;

K10, orange; dotted line, basement membrane.

(F) Quantification of the knockdown efficiency of siRNAs targeting Brg1 or Brm. Bars represent mean ± SD.

(G) Loss of Brg1 and Brm also inhibits the expression of KLF4 in differentiated human keratinocytes. Bars represent mean ± SD.

See also Figures S6 and S7.
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in the progenitor state and in activating normal differentiation-

gene expression.

The presence of ACTL6a in progenitor cell-containing popula-

tions is associated with suppression of the targeting of the SWI/

SNF complex to differentiation genes, and ACTL6a depletion

relieves this suppression in these undifferentiated cells. Previous

studies in lymphocytes indicated that >80% of total SWI/SNF

complexes in resting lymphocytes do not associate tightly with
200 Cell Stem Cell 12, 193–203, February 7, 2013 ª2013 Elsevier Inc
chromatin; however, a rapid and tight association of the complex

can be induced by cell stimulation (Zhao et al., 1998). A similar

mechanism may operate during epidermal differentiation in

that ACTL6a loss may stimulate the relocation of a portion

of SWI/SNF complexes to chromatin at differentiation-gene

promoters. This would also be in agreement with recent studies

in T helper cells, in which Brg1 binding to differentiation genes

was associated with gene induction (De et al., 2011).
.
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Figure 7. Hypothetical Model of ACTL6a Action in Regulating

Epidermal Tissue Differentiation

In undifferentiated conditions, ACTL6a prevents Brg1- or Brm-containing SWI/

SNF complex binding to and activation of KLF4 and other differentiation gene

promoters. During differentiation, ACTL6a downregulation facilitates SWI/SNF

binding to and activation of KLF4 and other differentiation genes. In addition,

the composition of the SWI/SNF complex also changes during differentiation

(reflected by the different shades of gray).
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The targeting of the SWI/SNF complex during differentiation

may result from a variety of inputs. The combination of different

regulatory subunits and the resulting overall conformation are

hypothesized to directly affect the targeting and activity of the

SWI/SNF complex (Wu et al., 2009). Therefore, the physical

association between ACTL6a and the SWI/SNF complex is likely

to form a specific conformation that may have less affinity to

differentiation genes. On the other hand, multiple transcription

factors and histone modifications can also play important roles

in recruiting the SWI/SNF complex (Debril et al., 2004;

Kowenz-Leutz and Leutz, 1999; Salma et al., 2004). Therefore,

it is formally possible that the recruitment of the SWI/SNF com-

plex to differentiation genes upon ACTL6a loss is indirectly medi-

ated by the transcription factors derepressed by ACTL6a loss,

such as KLF4. It is noteworthy, however, that KLF4 depletion

did not totally account for the full spectrum of differentiation-

gene derepression caused by ACTL6a loss. This partial rescue

of the ACTL6a loss defect could be due to a number of factors,

including action by transcription factors other than KLF4, such

as GRHL3, PRDM1, HOPX, and others.

KLF4 is an essential transcription regulator directly dictat-

ing multiple biological processes including cell proliferation,

differentiation, tumorigenesis, and pluripotency (Rowland and

Peeper, 2006; Vangapandu and Ai, 2009). However, very little

is known about how the expression levels of KLF4 are precisely

controlled to enable its multiple roles in different settings. During

epidermal differentiation, KLF4 expression increases substan-

tially, and both KLF4 loss of function and ectopic expression

significantly disturb epidermal growth and differentiation (Jau-

bert et al., 2003; Segre et al., 1999). Our findings have identified

ACTL6a as a negative regulator of KLF4 in the undifferentiated

progenitor state, and the downregulation of ACTL6a during

epidermal tissue differentiation thus appears to enable the upre-

gulation of KLF4 to help drive differentiation.

In addition to ACTL6a, we have observed that several other

actin-like proteins also change their expression during differenti-

ation, including ACTR8, which is functionally related to the Ino80

chromatin-remodeling complex. It is interesting to note that the

expression of ACTL6b is below the level of detection by multiple
Ce
methods in our lab, including quantitative RT-PCR and RNA

sequencing. ACTL6b was previously shown to replace ACTL6a

in associating with the SWI/SNF complex and dictating the

neuronal differentiation processes (Lessard et al., 2007). The

lack of detectable epidermal ACTL6b expression indicates that

the regulation of differentiation at the level of nuclear actin-like

proteins is significantly different in epidermis versus the neuronal

tissue. Consistent with our findings in the epidermal tissue,

ACTL6a is essential for the progenitor function in the hemo-

poietic system, where little ACTL6b is detected (Krasteva

et al., 2012; Kuroda et al., 2002; Olave et al., 2002). Future

studies on the functions of other actin-like proteins in multiple

tissues will further enhance our knowledge of developmental

regulation by these regulators and the epigenetic regulatory

complexes with which they associate.

EXPERIMENTAL PROCEDURES

Cells and Organotypic Culture

Primary human keratinocytes were isolated from fresh surgically discarded

newborn foreskin and cultured in complete Keratinocyte-SFM (Life Technolo-

gies, #17005-142) andMedium 154 (Life Technologies, #M-154-500). Organo-

typic regeneration of human epidermal tissue was performed as previously

described (Truong et al., 2006). Biological replicates were performed in all

cases using primary cells from at least three independent unrelated donors.

Gene Transfer and Knockdown

Gene transfer by viral transduction was performed as described (Sen et al.,

2010). shRNAs targeting ACTL6a were ordered from Open Biosystems. For

small interfering RNA (siRNA) knockdown, 1 3 106 cells were electroporated

with 1 nmol siRNA using the Amaxa Human Keratinocyte Nucleofector

Kit (Lonza, #VAPD-1002). For Brg1 and Brm knockdown, either the ON-

TARGETplus SMARTpool RNAi reagents (Dharmacon) were used, or single

ON-TARGETplus siRNA were used, including Brg1 Si A (Dharmacon,

#J-010431-12), Brg1 Si B (Dharmacon, #J-010431-09), Brm Si A (Dharmacon,

#J-017253-07), and Brm Si B (Dharmacon, #J-017253-05). For KLF4 siRNA,

the ON-TARGETplus siRNA (Dharmacon, #D-005089-19) were used.

KO Mice

ACTL6a-targeted mice were generated as described separately (J.T., unpub-

lished data). Mouse toes or 3mmof tail tissue were cut with clean surgical scis-

sors and heated in 75 ml of Reagent A (25 mM NaOH, 2 mM EDTA) at 95�C for

1 hr. After it was cooled down to room temperature, tissue was mashed with

a pipette tip to aid the release of genomic DNA. Reagent B (75 ml; 40 mM of

Tris-HCl; pH 7.5) was then added for neutralization. For genotyping, 1 ml of

each tissue’s genomic DNA extraction was used in a 20 ml PCR reaction.

Tamoxifen (Sigma-Aldrich, #T5648-1G) was dissolved in 100% ethanol at

a concentration of 0.5 mg per 100 ml. Mice were aged for least 40 days, and

their back hair was shaved prior to tamoxifen treatment. Each mouse received

0.5 mg tamoxifen each time applied directly on its back skin every 2 days, for

a total of three times. All animal studies were performed in accordance with

P.A.K.’s currently approved protocol (Stanford Institutional Animal Care and

Use Committee #4045).

Protein Expression and Tissue Analysis

For immunoblot analysis, 20–50 mg of cell lysates were loaded per lane for

SDS-PAGE and transferred to polyvinylidene fluoride membranes. For immu-

nofluorescence staining, tissue sections (7 mm thick) were fixed using either

50% acetone and 50% methanol or 4% formaldehyde. Primary antibodies

were incubated at 4�C overnight, and secondary antibodies were incubated

at room temperature for 1 hr. The affinity-purified antiserum against ACTL6a

and the J1 antiserum against Brg1/Brm were raised by the Crabtree Labora-

tory. Other antibodies used in this study include anti-BAF53a (Novus Biologi-

cals), anti-Krt1 (Covance), anti-Krt10 (Neomarkers), anti-Ki67 (Neomarkers),

anti-Loricrin (Covance), ms-anti-CollagenVII (Millipore), pAb-anti-CollagenVII
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(Calbiochem), goat-anti-CDSN (Santa Cruz Biotechnology), and rat-anti-

Nidogen (Santa Cruz Biotechnology).

Quantitative RT-PCR Expression Analysis

For quantitative RT-PCR (qRT-PCR), total RNA was extracted using RNeasy

Plus (QIAGEN) and subsequently subjected to reverse transcription using

the SuperScript VILO cDNA Synthesis Kit (Invitrogen). qRT-PCR analysis

was performed using the Mx3000P instrument with the SYBR Green Master

Mix (Fermentas). Samples were run in duplicate and normalized to levels of

GAPDH mRNA or 18S ribosomal RNA for each reaction. Primer sequences

are listed in Table S1.

mRNA Expression Profiling and Analysis

Amplification and labeling of complementary DNA (cDNA) probes and hybrid-

ization to the Human Genome U133 Plus 2.0 microarray chip (Affymetrix) were

performed by the Stanford Protein and Nucleic Acid Facility. Data analysis was

performed using R. Each data set for an experiment was filtered for probes that

had an expression value R100 in at least one of the samples, along with a p

value %0.05 based on significance analysis of microarrays. Pairwise com-

parisons between the RNAi-treated samples and the control samples were

performed for finding probes that showed R2-fold expression change. Addi-

tional gene sets were acquired from the Gene Expression Omnibus (GRHL3:

GSE7381, Yu et al., 2006; KLF4: GSE32685, Sen et al., 2012) or taken from

the supplemental tables for HOPX (Yang et al., 2010) and PRDM1 (Magnús-

dóttir et al., 2007). Significant genes were identified as having a R2-fold

change with p value <0.05. GSEA was conducted using Genomica software

with a p value cutoff of 0.05.

ChIP

ChIP assays were performed essentially as described previously (Euskirchen

et al., 2011) with minor modifications. Human keratinocytes were crosslinked

either with 1% formaldehyde alone or with dual crosslinking of both 2 mM

disuccinimidyl glutarate and 1% formaldehyde. The chromatin was sonicated

for the production of fragments with an average length between 200 and

500 bp. The sonicated chromatin was immunoprecipitated overnight at 4�C
with J1 antibody (Khavari et al., 1993), Poll II, or the same amount of immu-

noglobulin G control. Following reverse crosslinking, the samples were

treated with RNase and proteinase K, and the DNA was purified using the

QIAGEN PCR Purification Kit. ChIP product (2 ml) was used for each qPCR

reaction.

Colony-Formation Assay

Mouse fibroblast 3T3 cells were treated with 15 mg/ml mitomycin C (Sigma-

Aldrich) in Dulbecco’s modified Eagle’s medium for 2 hr, then trypsinized

and plated at 8 3 105 cells per well in a 6-well plate. The media was changed

to keratinocyte growth media 24 hr after plating. A total of 300 keratinocytes

were seeded onto the feeder layer 24 hr after the media change. Media was

changed every 2 days for 14 days. At the end of 14 days, the cells were washed

with PBS to remove the 3T3 cells, then fixed in 1:1 acetone/methanol for 5min.

The plate was allowed to air dry for 3–5 min, and then colonies were stained

with crystal violet.

Skin-Barrier Analysis

The skin-barrier analysis was performed essentially as previously published

(Scholl et al., 2007). In brief, live newborn mice or E17.5 embryos (dissected

and washed in PBS) were incubated overnight at 37�C in a 5-bromo-

4-chloro-3-indlyl-b-D-galactopyranoside (X-gal) reaction mix (100 mM

NaH2PO4, 1.3 mM MgCl2, 3 mM K3Fe[CN]6, 3 mM K4Fe[CN]6, and 1 mg/ml

X-gal [pH 4.5]). Images were taken the next morning, after incubation.

ACCESSION NUMBERS

Profiling data has been deposited with the GEO accession code GSE36222.
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