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Abstract

The mechanism underling stem cells’ key property, the ability to either divide into two replicate cells or a replicate and a differentiated

daughter, still is not understood. We tested a hypothesis that stem cell asymmetric division/differentiation is spontaneously created by

the coupling of processes within each daughter and the resulting biochemical feedbacks via the exchange of molecules between them

during mitotic division. We developed a mathematical/biochemical model that accounts for dynamic processes accompanying division,

including signaling initiation and transcriptional, translational and post-translational (TTP) reactions. Analysis of this model shows that

it could explain how stem cells make the decision to divide symmetrically or asymmetrically under different microenvironmental

conditions. The analysis also reveals that a stem cell can be induced externally to transition to an alternative state that does not have the

potentiality to have the option to divide symmetrically or asymmetrically. With this model, we initiated a search of large databases of

transcriptional regulatory network (TRN), protein–protein interaction, and cell signaling pathways. We found 12 subnetworks (motifs)

that could support human stem cell asymmetric division. A prime example of the discoveries made possible by this tool, two groups of

the genes in the genetic model are revealed to be strongly over-represented in a database of cancer-related genes.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Stem cells have the unique capacities to develop
into specialized cell types and proliferate extensively
(Kirschstein et al., 2001; Yu et al., 2006). Due to these
unique properties, stem cells have been studied in many
contexts in the pure and applied life sciences, e.g. tissue
transplantation, repair of tissue damages, embryonic
development and cancer (Kirschstein et al., 2001; Yu
et al., 2006; Jordan et al., 2006; Tannishtha et al., 2001;
Passegue et al., 2003; Tenen, 2003; Broxmeyer et al., 2006;
Atala, 2006). A stem cell can divide into two identical stem
cells (replication/symmetric division) or one replicate and
a differentiated daughter cell (differentiation/asymmetric
division). For years, researchers have sought ways to
delineate mechanisms of stem cell differentiation and to
develop techniques to direct it to produce specific cell lines
with clinical relevant applications (Masson et al., 2004;
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Heng et al., 2004; Odorico et al., 2001; Atala, 2006).
Meanwhile, theoretical models have been proposed and
developed to describe cell differentiation mechanisms. In
2001, Furusawa and Kaneko proposed a theory that
describes the robustness of irreversibility in stem cell
differentiation based on an analysis of a random network.
Theise and d’Inverno (2004) described cell differentiation
as an adaptive phenomenon, and Cinquin and Demongeot
(2005) investigated a model involving high-dimensional
switches. These models conceptually explained the cell
differentiation phenomenon, however, they were all based
on hypothetical networks instead of an experimentally
verified biological (e.g. human cell) system, and therefore
their predictive capability is limited. Loeffler and Roeder
(2002) summarized previous works and proposed a frame-
work for developing predictive quantitative stem cell
models. More recent models focused on small regulatory
networks with genes and transcription factors (TFs) that
had been demonstrated experimentally to be involved in
stem cell differentiation. Roeder and Glauche (2006) built a
model based on the gene/TF interaction of GATA-1 and
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PU.1, which were considered key TFs mediating differ-
entiation in the hematopoietic stem cell system. Chick-
armane et al. (2006) developed a network of feedforward
regulation of genes OCT4, SOX2 and NANOG that
exhibits dynamical switching for embryonic stem cells.
While these studies focused on gene/TF interactions, it is
expected that cell differentiation is the consequence of a
complex gene/TF interactions that can be genome-wide in
scope due to extensive gene–gene cross-talk in the human
transcriptional regulatory network (TRN), instead of being
the consequence of a subnetwork of two or three ‘‘key’’
gene/TF interactions. Although all the above models seem
to explain selected features of differentiation, none of
them explained a stem cell’s key capacity to divide into a
replicate daughter and a differentiated one, instead of two
differentiated daughters. More importantly, we suggest
that a viable model of cell differentiation should not only
be able to explain the biological phenomenon, but should
also take advantages of the wealth of experimental data on
cytokine-induction, database of signaling pathways, pro-
tein–protein interactions, and human TRN information; as
well as gene expression microarray, proteomic and meta-
bolic data. A recent step in that direction had been taken
by Qu et al. (2007) that use a genome-wide approach to
predict dramatic transitions of a human cell behavior based
on TRN information, microarray data and a nonlinear
dynamical system analysis.

Recent experimental results show that cytokines, growth
factors and other constituents in the extra-cellular medium
activate signaling pathways involved in the stem cell’s
decision to replicate or differentiate (symmetric versus
asymmetric division) (Li and Neaves, 2006; Fuchs et al.,
2004; Tumbar et al., 2004; Rizvi and Wong, 2005). Presently,
at least four signaling pathways, Wnt (Wodarz and Nusse,
1998; Polakis, 2000), Notch (Gaiano and Fishell, 2002;
Artavanis-Tsakonas et al., 1999), Hh (Villavicencio et al.,
2000), and BMP (Haramis et al., 2004), have been
characterized and shown to mediate cell proliferation and
differentiation (Rizvi and Wong, 2005). The common
characteristic of these pathways is that they are initiated with
a cytokine that activates a membrane-bound receptor,
through which a sequence of transcriptional, translational,
and post-translational (TTP) processes are initiated within the
cytoplasm and the nucleus, with resultant activation/deacti-
vation of transcription of a specific set of genes, and
subsequent stem cell replication/differentiation.

Although it is clear that the composition of the
microenvironment (or ‘‘niche’’) is vital in creating suitable
conditions for cytokine-induced cell replication/differentia-
tion (Li and Neaves, 2006; Fuchs et al., 2004; Tumbar
et al., 2004; Rizvi and Wong, 2005), many other aspects of
stem cell replication/differentiation behaviors are still not
understood, for instance:
�
 What are the quantitative relationships between the
microenvironment conditions and stem cell replication/
differentiation?
�
 What genes and proteins are involved in stem cell
proliferation/differentiation? What are their functions
and how do they interact? How do the characteristics of
a stem cell change if the transcription of selected genes is
changed?

�
 How can a stem cell differentiate into two distinct

daughter cells when both are subjected to the identical
microenvironment?

In this study, we provide a possible answer to the above
questions based on the concepts of ‘‘symmetry-breaking
instability’’ and ‘‘self-organization’’. A symmetry-breaking
instability occurs when differences among interacting
subsystems, all having the same internal dynamical
processes, are spontaneously amplified as the result of a
feedback that arises through the coupling of the subsys-
tems, i.e. systems self-organize the pattern of asymmetry
(Ortoleva and Ross, 1973a, b; Nicolis and Prigogine, 1977).
Hallmarks of self-organizing systems are (1) the existence
of control parameters which, in a given range of values,
promote self-organization, while it is repressed in another
range of these parameters; and (2) the pattern that develops
is not imposed from the environment. In the present study,
the subsystems are the two daughters of a dividing stem
cell, while the control parameters are the concentrations
of molecular constituents in the microenvironment. The
intracellular dynamic processes we believe to be important
include TTP processes and the activation of cell and
nuclear surface receptor sites. Processes of molecular
exchange between the daughter cells and with the micro-
environment are also accounted for in our approach.
The present work is based on three fundamental

hypotheses.

H1. Biochemical feedback can allow a cell to support
multiple states of composition and other variables, all for
the same microenvironment (Rashevsky, 1960; Hahn et al.,
1973; Chickarmane et al., 2006; Qu et al., 2007).

H2. Two cells interacting through the exchange of
molecules can spontaneously evolve into distinct states
through biochemical feedback, even though they are
identical in the set of processes occurring within them,
their architecture, their initial state, and the microenviron-
ment to which they are subjected (Ortoleva and Ross,
1973a, b).

H3. H1 and H2 for stem cell replication/differentiation can
be tested due to the current availability of experimental
data on eukaryotic cells, bioinformatics tools, and our cell
modeling software (https://systemsbiology.indiana.edu;
Sayyed-Ahmad et al., 2007; Tuncay et al., 2006; Sun
et al., 2007; Qu et al., 2007).

It is hypothesized that the stem cell asymmetric division/
differentiation is mediated via the interplay of the signaling
pathways, TTP processes, and the exchange of proteins and
other molecules between the two daughter cells accom-
panying division of a stem cell. We suggest differentiation

https://systemsbiology.indiana.edu
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Fig. 1. Schematic depiction of a stem cell dividing into two daughters and

TTP5 model. Top: stem cell dividing. The brown curve shows the cell

membrane, the blue dotted line indicates the nuclei. The DNA has been

replicated. mRNAs (colored strands) are being transcribed and translated

into proteins (colored shapes). Cytokines (yellow diamond C) are sending

signals into the cell by activating surface receptors. Resulting signals

(yellow diamond S) within the cell complex with proteins Y and transform

them into active transcription factors Y*, which regulate the transcription

of selected genes (e.g. GX). Here, for simplicity, we assume the signal

concentration equals to the cytokine concentration. In the stage shown

above, the two daughter cells are still connected, and proteins and other

molecules move between them. The colored dots represent small molecules

(e.g. ATP, ions and hormones) that exist in both the microenvironment

and the cell. Bottom: TTP5 model. Gene/protein interactions are shown.

Auto-regulated gene GX up-regulates (+) GY which encodes protein Y. S

represents signaling factor activate protein Y to TF Y*, which up-regulates

GX. GX up-regulates GZ, which encodes protein Z. Protein Z complexes

with protein Y. GT is also an auto-regulated gene, and is up-regulated by

GX. GT up/down (7) regulates the expression of a lot functional genes GF,

GF 0, and GF 0, etc., which determine the cell behavior.
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is one of a stem cell’s capacities that originates in its
internal TTP network which can be trigged through
signaling pathways, as is also noted in Loeffler and Roeder
(2002). We suggest that differences between daughter cells
accompanying asymmetric division/differentiation are cre-
ated by minor random events and are spontaneously
amplified by biochemical reaction/transport feedbacks
during division. We term this scenario the self-organization
of stem cell differentiation and, in particular, propose
a 5-gene/mRNA/protein model (TTP5) that integrates
cytokine signal initiation, TTP processes and intercellular
communication. The methodology proposed shows math-
ematically and biologically how a stem cell decides to
replicate or differentiate and offers a procedure for
discovering the distinct factors that control this decision.

The great promise of our theory and automated
discovery approach is that, given multiple experimental
data to calibrate the chemical kinetic and transport
coefficients, one can identify ranges of conditions (e.g.
concentrations of cytokines and growth factors) in the
microenvironment that support asymmetric versus sym-
metric division. This methodology integrates and takes full
advantage of the existing experimental results on cytokines,
signaling pathways, human TRN and protein–protein
interaction databases, and genomic and proteomic micro-
array data. This tool may also illustrate the range of
influence for each experimentally or therapeutically con-
trollable factor for which data exists. The availability of
this quantitative and predictive model we are attempting to
build will enable the computer-aided design of stem cell
technologies and therapies.

2. Methods

2.1. Biological context

The cell cycle consists of DNA replication (Synthetic, S
phase), division into two cells (Mitotic, M phase), and two
intervening gap phases (G1 and G2). We hypothesize that
asymmetry is self-organized in the M phase (Fig. 1). By our
definition, a stem cell symmetry-breaking motif is a set of
genes and proteins that enables the following sequence of
events. Early in M phase, the two daughter cells are
strongly coupled as the membrane separating them has not
yet completely formed. At this stage, molecular exchange
between the two daughters is so rapid that differences
in their composition cannot develop. However, as the
membrane forms, the symmetric state can be destabilized
and differences in levels of proteins and other components
are amplified through biochemical reaction-transport feed-
back. Once the membrane separates the daughter cells,
they must be left in distinct states which, as for a
hematopoietic stem cell, may result in complete isolation
of the two daughters by physical separation. Thus, it seems
evident that the single cell system must itself support
multiple distinct stable states of the TTP system (including
a stem cell state and a distinct transformed state). In stem
cell asymmetric division/differentiation, the symmetry-
breaking mechanism guides one daughter into a stem cell
state and the other into a differentiated state. In contrast,
stem cell replication does not have this ‘‘deliverance’’
property, and both daughter cells are guided to the stem
cell state. Therefore, a stem cell model must support both
the symmetric and asymmetric cases under distinct extra-
cellular conditions, as implied by the abilities of a stem cell
to divide symmetrically or asymmetrically depending on
the microenvironment.
A number of simple models were used to illustrate

symmetry-breaking in reaction-transport systems (Turing,
1952; Ortoleva and Ross, 1973a, b), frog development
(Borisuk and Tyson, 1998; Zhao et al., 1999; Valles, 2002),
and electrical unicellular systems (Larter and Ortoleva,
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1982). The model we developed is mainly inspired by the
Brusselator (Nicolis and Prigogine, 1977), although it
would be interesting to carry out a similar test of statistical
significant for the other mechanisms as a best left to a
future study. The Brusselator is one of the most well-
studied models that support self-organized symmetry-
breaking phenomena and its chemical reaction network is

A! X (1)

Bþ X ! Y þD (2)

2X þ Y ! 3X (3)

X ! E (4)

If A, B, D and E are kept constant, and species X and Y are
allowed to exchange between adjacent cells, than this
system can display symmetry-breaking instability under
appropriate ranges of conditions (i.e. the concentrations of
A and B). The special feedback/feedforward topology of
the two species X and Y (e.g. X up-regulates itself through
Y) in the Brusselator enables the system to support
symmetry-breaking.

The following 5-gene/mRNA/protein network (TTP5)
(see Fig. 1) is constructed to have the similar feedback/
feedforward topology of that of the Brusselator and is
shown here to support symmetry-breaking stem cell
replication/differentiation. However, this model is built
from the commonly accepted elements of the signaling
pathways induced stem cell differentiation scenario. The
latter include cytokine activation, TTP processes, with
resultant activation/deactivation of transcription of specific
target genes, and subsequent stem cell replication/differ-
entiation. Genes GX, GY, GZ, GT and GF are transcribed
to mRNAs RX, RY, RZ, RT and RF, and translated
into proteins X, Y, Z, T and F, respectively. The auto-
regulated gene GX up-regulates GY, which encodes protein
Y. Signaling factor S reacts with protein Y and activates it
to TF Y*, which up-regulates GX. Meanwhile, GX up-
regulates GZ, which encodes protein Z. Protein Z complexes
with protein Y and competes with protein Y activation
process. GX, GY and GZ form both feedforward and
feedback loops, which are similar to the Brusselator
topology. Another auto-regulated gene GT, which is also
up-regulated by GX, up/down regulates the expression of a
lot functional genes GF, GF0, and GF00, etc. In this model, the
auto-regulation of gene GT enables a cell to support
multiple states (H1). GX, GY and GZ form a Brusselator-
like structure that enables a symmetry-breaking behavior of
the expression of GX, which then delivers the expression of
GT from a stem cell state to a differentiated state in the
differentiated daughter and keeps that of the replicate
daughter unchanged. Since GT controls a lot functional
genes (GF, GF0, and GF00, etc.), the different expression of GT

causes the different expression of those functional genes
and thus change the cell behavior. This 5 gene/RNA/
protein model constitutes of the minimum requirements for
symmetry-breaking delivering differentiation. Auto-regu-
lated genes GX and GT are the two key genes in the
differentiation scenario. Post-translational reactions ac-
counted-for include protein degradation and complexing
of signaling molecules with protein Y.

2.2. Reaction/transport equations and rate parameters

dRX1

dt
¼KX1

QX1
X 2

1

1þQX1
X 2

1

 !
QX1

Y �1

1þQX1
Y �1

 !
þ xX1

� lX1
RX1

(5)

dX 1

dt
¼ aX1

RX1
� bX1

X 1 þ hX ðX 2 � X 1Þ (6)

dRY1

dt
¼ KY1

QY1
X 1

1þQY1
X 1
þ xY1

� lY1
RY1

(7)

dY 1

dt
¼ aY1

RY1
� bY1

Y 1 � �CY 1 þ hY ðY 2 � Y 1Þ (8)

dY �1
dt
¼ �CY 1 � gZY �1 þ hY� ðY

�
2 � Y �1Þ (9)

dRZ1

dt
¼ KZ1

QZ1
X 2

1

1þQZX 2
1

þ xZ1
� lZ1

RZ1
(10)

dZ1

dt
¼ aZ1

RZ1
� bZ1

Z þ hZðZ2 � Z1Þ (11)

dRT1

dt
¼ KT1

QT1
T2

1

1þQT1
T2

1

 !
X 1

1þ X 1

� �
þ xT1

� lT1
RT1

(12)

dT1

dt
¼ aT1

RT1
� bT1

T1 þ hT ðT2 � T1Þ (13)

dRF1

dt
¼ KF1

QF1
T2

1

1þQF1
T2

1

þ xF1
� lF1

RF1
(14)

dF1

dt
¼ aF1

RF1
� bF1

F 1 þ hF ðF 2 � F1Þ (15)

hi ¼

hi0 ðto0Þ

hi0 �
t
t ðhi0 � hf Þ ð0ptotÞ ði ¼ X ;Y ;Y �;Z;T ;F Þ

hf ðt4tÞ

8><
>:

(16)

Ordinary differentiation equations provide a quantita-
tive description of the above processes. Sub note 1
represent RNAs/proteins/parameters/constants of daugh-
ter cell 1, and 2 means those of daughter cell 2. Only the
equations of daughter cell 1 are shown. A more general
genome-wide model had been developed in Qu et al. (2007)
(Appendix A), where chemical kinetic model for transcrip-
tional, translational and post-translational processes were
deduce from statistical assumption and bioinformatics.
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Table 1

Parameter values and references

Parameters Value Data source

K transcription rate forefactor

KX (nM/h) �320 Slutsky and Mirny (2004),

Proudfoot (2000)
KY (nM/h) �16

KZ (nM/h) �16

KT (nM/h) �16

KF (nM/h) �16

Q transcription factor

binding constant

0.05 nM�1

or

0.05 nM�2

None

l mRNA degradation rate

(h�1)

�1.0 /http://www.wisc.edu/

molpharm/Courses/

pharm620/Lecture_16.

web.pptS
a Translation rate (h�1) �0.1 Ujvaro et al. (2001)

b Protein degradation rate

constant (h�1)

�0.075 Averaged from the

literature

hi0 permeability before division

hX0
0.015 None

hY0
2.625

hYn
0

2.625

hZ0
0.20

hT0
0.02

hF0
0.02

hf permeability after division 10�4 None

e Rate constant of binding

for cytokine to proteins

(nMh)�1

�0.1 None

g Rate constant of binding

for two proteins (nMh)�1
�0.08 Uetz et al. (2000)

x Residual transcription rate

factor

0.05 None
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Similar formulas have been used to describe TTP processes
in other sources (Cinquin and Demongeot, 2005; Hasty
et al., 2000, 2001; Vu and Vohradsky, 2007; Zak et al.,
2003). Eqs. (5), (7), (10), (12), and (14) model the
transcription and degradation of mRNA RX, RY, RZ, RT

and RF, respectively; Eqs. (6), (11), (13), and (15) account
for the translation and degradation of proteins X, Z, T,
and F. Eqs. (8) and (9) generate the dynamics of protein Y

and TF Y*, where C represents the cytokine concentration.
hi is the permeability of protein i (i=X, Y, Y*, Z, T and F)
for exchange between the two daughter cells times the
shared area divide by the single cell volume, and follows a
hill function as Eq. (16). t is time and t is the typical
time for mammalian cell mitosis. Here t ¼ 0 means the
stem cell begins to divide, thus two daughter cells have
extensive communication and the permeability is large
(hi0). t ¼ t means the division has been completed, and two
daughter cells have restricted communication hf. We
assume the signal molecule S concentration in the cell is
proportional to the cytokine concentration in the micro-
environment, thus we use cytokine concentration C to
represent the effect that is made by signal molecules.
Ki is the overall transcription rate forefactor of gene i,
in considering RNA polymerase binding, reading and
elongation. li, ai and bi are the rate constants for mRNA
degradation, translation and protein degradation respec-
tively of their corresponding gene/RNA/protein i. e and g
are rate constants for cytokine–protein and protein–pro-
tein binding. Qi is the binding constant for a TF to a
gene, which, for simplicity we take to be the same for all
genes and TFs. xi accounts for a small residual transcrip-
tion rate for gene i. The values of these parameters are
provided in Table 1.

2.3. Bifurcation analysis and AUTO

Bifurcation analysis is accomplished using an augmented
version of AUTO software (Doedel et al., 1991) which
delineates the types and range of existence of distinct states
for a prescribed interval of physical parameters of a model.
Our augmentation of AUTO involve the use of more
efficient numerical procedures and created a preprocessor
that automatically generates an AUTO Fortran input file
for a general form of models and allows for an arbitrary
number of molecular species and processes. This system is
available at /https://systemsbiology.indiana.eduS.

2.4. TRN construction and protein–protein interaction

database

Gene regulation can be described via a TRN, which
includes (1) a list of genes, each of which contains a set of
proteins or protein complexes (the TFs) that up or down
regulate their expressions and (2) for each of the TFs, the
gene(s) that encode its components. We have developed a
preliminary version of an automated systems biology
approach to discover TRNs and implemented it as a
web-based service (https://systemsbiology.indiana.edu
and Qu et al., 2007), and we also have a video demo on
the website tutoring of how to use our TRND system.
Our construction workflow now contains several bioinfor-
matics modules including: a TF-based method using
cDNA microarray data to correct, extend and calibrate a
TRN (FTF/KAGAN), gene ontology (GO) promoter
analyses module, as well as a correlation method and
Phylogenic similarity analysis. The results of the individual
modules are integrated via a Bayesian approach to discover
gene/TF regulatory interactions with the highest confi-
dence (Sayyed-ahmad et al., 2007; Tuncay et al., 2006;
Sun et al., 2007). The TRN we constructed and used
in this study contains 3058 genes, 1187 TFs and 6166
experimentally verified and predicted gene/TF interactions
for human cells.
The Human Protein Reference Database (HPRD:

www.hprd.org) is developed by Peri et al. (2003). It records
protein–protein interactions using Entrez Gene ID. We
modify the ID-index-based interaction file to their corre-
sponding encoding gene-name-based file through UniGene
ID and UniGene name and get 37,385 pairs of human
protein–protein interaction.

https://systemsbiology.indiana.edu
https://systemsbiology.indiana.edu
http://www.hprd.org
http://www.wisc.edu/molpharm/Courses/pharm620/Lecture_16.web.ppt
http://www.wisc.edu/molpharm/Courses/pharm620/Lecture_16.web.ppt
http://www.wisc.edu/molpharm/Courses/pharm620/Lecture_16.web.ppt
http://www.wisc.edu/molpharm/Courses/pharm620/Lecture_16.web.ppt
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3. Results

3.1. Bifurcation and full time-dependent analysis

Behaviors supported by the TTP5 model described in
Section 2 were explored via numerical simulation. Bifurca-
tion analysis was used to delineate families of cell ‘‘states’’
(i.e. mRNAs, protein, TF intercellular contents) change
with ‘‘control’’ variables (i.e. microenvironmental compo-
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asymmetric division. The stem cell system stays on a stable
steady state until it enters M phase, and reaches the first
bifurcation point A, when one of the daughter cells
transitions to state B, while the other transitions to state
C (i.e. symmetry-breaking occurs). The two daughters
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remain in distinct states from that of the original stem cell
until they reach states D/E, when the replicate daughter
transitions to a state that is the same as the original stem
cell (state H), and the differentiated daughter transitions to
a state with some of its proteins (e.g. X, Y and Z)
at the same concentration levels as those of the original
stem cell, while other proteins (e.g. T and F) are delivered
to different levels and thereby distinguishing that cell to a
different phenotype. As mentioned in Section 2, the
symmetry-breaking of the expression of protein X helps
to deliver the expression of protein T and F from their
levels in stem cell to that characteristics of the differen-
tiated daughter while those in the replicate daughter end up
to be unchanged.
In arriving at the bifurcation diagram (Fig. 2), TTP

processes are assumed to be relatively fast compared to
other processes that dictate the rate decrease in the cell-to-
cell communication. Dynamical simulations of the protein
concentrations in the two daughter cells during division are
shown in Fig. 3. Here, Gaussian white noise has been
added in each differential equation to trigger an initial
difference. noise ¼ D� d, D is intensity of noise in the net
reaction rate, and d is a random number that follows
Gaussian distribution.
Small (as small as D ¼ 10�10) random noise can trigger

the symmetry-breaking of the expression of protein X, and
therefore initiates stem cell differentiation process. In
reality, asymmetry does not develop instantaneously when
the bifurcation point (point A) is traversed; rather it occurs
gradually, being completed at point P in Fig. 3. Asymmetry
onset time (normalized time value of point P) for different
noise intensities were recorded and shown in Fig. 4a. It is
clear that the larger the noise intensity, the earlier the
asymmetry occurs. This implies that the system uses
fluctuations to initiate asymmetric division. To ensure the
deliverance of state E to state G shown in Fig. 2d, state G
must have a large enough basin of attraction. We probed
the size of basin of attraction by running 1000 different
random noise scenarios, and counted the percentage of
successful deliverances (and therefore differentiation).
When noise intensity Dp10�2, 100% of the stem cell
differentiated. This means the basin of attraction of state G
is larger. When noise intensity is greater than 10�2 the
Fig. 3. Dynamic simulations of protein concentrations in two interacting

daughter cells as in Fig. 2. These time series show how differences in the

daughters develop dynamically. Proteins X, Y, Z, T and F profiles versus

normalized time t/t are shown in graph (a), (b), (c), (d), and (e),

respectively. The blue line shows the time series for the replicate pathway;

red lines show the differentiation pathway. Point P is the time when

symmetry-breaking starts. It happens slightly later than the bifurcation

point A, because the system must accumulate enough fluctuation in order

to get out of the unstable symmetric steady state. After division is

complete, the levels of proteins X, Y, and Z in both daughters return to

their initial values in the original stem cell. In contrast, proteins T and F

levels differ in the replicate and differentiated daughters. Here, the noise

intensity D ¼ 10�6. Here, we set cytokine concentration C ¼ 1.0 nM.

Simulation starts from the higher steady state.
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percentage of deliverance decreases as noise intensity
increases. The result is shown in Fig. 4b.

These results clearly show that (1) small random
fluctuation can trigger symmetry-breaking of the system
and (2) the large basin of attraction of state G ensures the
successful deliverance from state E to state G. As the
ubiquity of small random fluctuation in a real biological
system (notably concentration fluctuations of low popula-
tion species such as RNA), these dynamical simulations
illustrate the robustness of the symmetry-breaking self-
organization mechanism of asymmetric stem cell division/
differentiation scenario.

3.2. Microenvironment cytokine regulation

To enable a stem cell differentiation scenario, two key
processes are required: (1) the symmetry-breaking of the
expression of protein T, which is controlled by the
symmetry-breaking of the expression of protein X, as we
stressed in Section 2; and (2) the deliverance of protein T

expression from one stable steady state E to another
previously unconnected stable steady state G (Fig. 2d),
which is controlled by the basin of attraction of state G, as
we discussed above. In order to illustrate the effect of extra-
cellular conditions on regulating stem cell replication/
differentiation, we study the relationship between the
microenvironmental cytokine concentration and these
two key processes. We consider how the protein expres-
sions, especially that of protein T, changes as the
microenvironmental cytokine concentration changes. Bi-
furcation and dynamical simulations of protein T concen-
tration under different cytokine concentration values are
shown in Figs. 5 and 6. We divide each bifurcation graph
into different zones (defined in Table 2). Symmetry-
breaking instability happens when the stem cell starts in a
stable state (zone I), as division progresses, the two
daughter cells evolve into two distinct stable states (zone
III); and deliverance happens when the stem cell passes
through a zone that contains both symmetric and asym-
metric stable states (zone II), and ultimately, one of them
transitions to the original stem cell state (zone I) while the
other is committed to a previously unconnected stable state
(also zone I). That is to say, in order to have differentia-
tion, a stem cell has to pass through zones I, III, II and
return to I during division. According to this criteria and
graphs shown in Fig. 5, a stem cell replicates when cytokine
concentration C ¼ 0.25, 0.90, or 1.60 nM, but differentiates
when C ¼ 1.00 nM (reason shown in Table 3). These
predictions have been verified by the dynamical simulations
shown in Fig. 6.
We also made a 2-D bifurcation diagram depicting

the effect of conditions in the extracellular cytokine
concentration (C)/cell–cell communication (h) (Fig. 7), by
combining a number of one dimensional bifurcation
diagrams as in Fig. 5 along various trajectories in the C/h
plane. Behavioral zones (defined in Table 2) are also
indicated. Based on the criteria we mentioned above,
only when the extracellular cytokine concentration is
between �0.95 and �1.1 nM (as is DC shown in Fig. 7),
which is neither too large nor too small, a stem cell
differentiates, otherwise the stem cell will replicate.
We believe similar 2-D bifurcation diagrams will be very
useful in predicting stem cell behavior under various
microenvironmental conditions.
All dynamical simulations (Figs. 3 and 6) start from the

higher unconnected steady state (if there are two or more
disconnected steady state). Interestingly, (1) the number of
unconnected steady state is influenced by microenviron-
mental condition, see Fig. 5, when cytokine concentration
is too low, there is only one unconnected steady state
Fig. 5a and b; (2) when there are two attractors supported
by our model for the single cell or symmetric state with
appropriate cytokine concentration, see Fig. 5c, it seems
that only the higher one of them could act as a stem cell
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Fig. 5. Bifurcation diagrams of protein T expression under different cytokine concentrations: (a–d) show the bifurcation of protein T concentrations

versus the permeability for microenvironmental cytokine concentrations C ¼ 0.10, 0.25, 1.00 and 1.40 nM, respectively. Solid lines are stable steady states,

and dashed lines are unstable steady states. Each graph is divided into different zones by dotted lines. Zones are defined in Table 2.
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with the option of dividing symmetrically or asymmetri-
cally. The lower one, on the contrary, does not appear to
enable differentiation. This may suggest that (1) the stem
cell potentiality is inherited in at the systems level and not
simply by genetics; and (2) it is difficult for a differentiated
daughter to return to its progenitor stem cell.

3.3. TTP5 motif in human cells and their relation to cancer

GenDat (https://systemsbiology.indiana.edu) is a data-
base containing 3058 genes, 1187 TFs and 6166 experi-
mentally verified and predicted gene/TF interactions for
human cells. The HPRD (www.hprd.org) contains 37,385
pairs of protein–protein interactions for human cells. We
search these two databases for stem cell TTP5 motifs and
12 such networks were found (see Appendix A). We believe
that these genes are most likely to be involved in
self-organized differentiation, for instance, gene RELB
and NFKB1 which encode the protein components of the
key TF (NF-kB) that is known to control T/B cell
differentiation through Notch signaling pathway in hema-
topoietic stem cell system (Bray, 2006; Osborne and
Minter, 2007). This set of networks provides guidance for
targets of future RNA and protein expression experiments
that delineate human stem cell profiles. Given knowledge
of the TFs that regulate the involved genes (see GenDat),
our result provides ways to direct stem cell behavior. Gene
functions are from GO website (http://www.geneontology.
org) and NCBI website (http://www.ncbi.nlm.nih.gov) and
were integrated in GenDat.
To validate our TTP5 network, we made two types of

random networks, in random network type 1, we fixed the
total number of genes, TFs and the number of up/down
interactions for each gene to be the same as the actual
network we used, and randomly chose TFs regulate each
gene. In 15,000 constructed random networks, the prob-
ability to find 10 or more TTP5 motifs is less than 5.8%
(Fig. 8a). Type 2 network is more randomized than type 1,
we fixed the total number of genes, TFs and up/down
interactions, and randomly assign up/down interactions for
all genes/TFs, thus the number of genes with given number
of TFs regulating them is not constrained. The probability
to find six or more TTP5 motifs is only 6.67� 10�5

(Fig. 8b). From Fig. 8 we see, for a network chose at
random, the probability that it support N TTP5 motifs
decrease with N, and for a network with the least human
TRN character is least likely to support TTP5 motifs.
These results show that the TTP5 networks in the human
TRN is over-represented relative to random networks.
As experimental evidence suggests the existence of cancer

stem cells (Jordan et al., 2006; Tannishtha et al., 2001),
common properties of stem and cancer cells suggest that

https://systemsbiology.indiana.edu
http://www.hprd.org
http://www.geneontology.org
http://www.geneontology.org
http://www.ncbi.nlm.nih.gov
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steady state if there is more than one steady state. Blue lines show the time series of protein T expression in the replicate cell and red lines showing that of
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predictions made on the bifurcation diagrams in Fig. 5. See Section 3 and Table 3 for further discussions.

Table 2

Definition of the types of steady states supported by domains in Figs. 5

and 7

Zone Type of steady states supported in each unconnected branch

I One stable symmetric steady state

II One stable symmetric steady state and two stable asymmetric

steady states and two unstable asymmetric steady states

III Two stable asymmetric steady states and one unstable symmetric

steady state

A stem cell can support multiple unconnected branches of steady states

(H1). In this case, both of them share the same boundaries between these

three defined zones. Note that in zone I, one of the stable states

corresponds to the stem cell while the other is the yet-unrealized

differentiated state.

Table 3

Stem cell fate under different cytokine concentrations

Cytokine

concentration,

C (nM)

Stem cell fate Reason

0.10 Replication Only across zone I during

division

0.25 Replication Not across zone II during

division

1.00 Differentiation Across all the required zones

1.40 Replication Only across zone I during

division
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some mechanisms of stem cell replication/differentiation
can be discovered via studies of cancer, particularly cancer-
related genes and their interactions. To investigate this
hypothesis, we initiated a search to determine whether
oncogenes and tumor repressor genes (cancer genes)
(http://embryology.med.unsw.edu.au/DNA/DNA10.htm)
are significantly over-represented in our TTP5 networks.
Cancer genes are observed more often in the GX, GT, and

http://embryology.med.unsw.edu.au/DNA/DNA10.htm
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GY gene categories. We see (Fig. 9) 50% (6 out of 12) GX

genes are cancer genes, and the probability to find cancer
genes in GT group is even greater, which is 57.9% (11 out
of 19), whereas, only 2.65% (81 out of 3058) of the genes in
the database are cancer genes. The result implies that many
genes involve in stem cell differentiation might also be
involved in cancer, and that cancer cells’ proliferation/
differentiation might have some of the same mechanism as
that of stem cells.
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6.67� 10�5.
One may suspect that the database we use contains much
more information on cancer genes and therefore cancer
genes are over-represented among highly connected genes,
in other words, highly connected genes are more likely to
be cancer genes. Since GX, GY, GZ, GT genes (defined here
as core genes) are highly connected, it is not surprising that
cancer genes are over-represented among these core gene
groups. Does that mean the high probability of cancer
genes among the core genes we found through our TTP5
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database for TTP5 motifs and counted the number of genes that are

oncogenes or tumor repressor genes (cancer genes). We found that the

probability to find a cancer gene in gene category GX is 50.0% (6 out

of 12), GY is 33.3% (6 out of 18), GZ is 32.4% (11 out of 34), GT is 57.9%

(11 out of 19) and GF is 7.26% (40 out of 551). For a randomly selected

gene, the probability that it is a cancer gene is only 2.65% (81 out of 3058).

Cancer genes are clearly over-represented in category GX and GT.
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Table 4

Connectivity distributions of all genes, cancer genes, core genes and core cancer genes for a given number of connections

Connections NG1 F1 NG2 F2 NG3 F3 NG4 F4

1–5 2658 0.8692 42 0.51852 13 0.28889 1 0.0625

6–10 222 0.0726 14 0.17284 6 0.13333 1 0.0625

11–15 71 0.02322 2 0.02469 2 0.04444 0 0

16–20 34 0.01112 5 0.06173 3 0.06667 2 0.125

21–25 18 0.00589 3 0.03704 3 0.06667 1 0.0625

26–30 11 0.0036 1 0.01235 2 0.04444 0 0

31–35 6 0.00196 1 0.01235 1 0.02222 1 0.0625

36–40 4 0.00131 1 0.01235 1 0.02222 0 0

41–45 7 0.00229 1 0.01235 1 0.02222 1 0.0625

46–50 4 0.00131 1 0.01235 0 0 0 0

51–55 3 9.81033E�4 1 0.01235 1 0.02222 0 0

56–60 1 3.27011E�4 0 0 0 0 0 0

61–up 19 0.00621 9 0.11111 12 0.26667 9 0.5625

Here, we define GX, GY, GZ, GT genes that follow our TTP5 motif are core genes. This table contains nine columns: the first column is the range of

connections and the other columns are: NG1, the number of genes in our database that have connections in each range; F1, the fraction of genes in our

database that have connections in each range; NG2, the number of cancer genes in our database that have connections in each range; F2, the fraction of

cancer genes in our database that have connections in each range; NG3, the number of core genes that have connections in each range; F3, the fraction of

core genes that have connections in each range; NG4, the number of core cancer genes with connections in each range; and F4, the fraction of core cancer

genes that have connections in each range.
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motif is coincidently caused by the high connectivity of
those genes instead of any cancerous or other biological
mechanisms? In order to clarify these issues, we made
Table 4 showing the connectivity distribution for all genes,
cancer genes, core genes, and core cancer genes.

The TRN we use contains 3058 genes, 81 of which are
cancer genes (there are 159 known cancer genes in total,
http://embryology.med.unsw.edu.au/DNA/DNA10.htm);
we found 45 core genes that follow our TTP5 motif, 16 of
which are cancer genes (therefore core cancer genes). From
column NG1 and F1 in Table 4, we see there are only a few
genes in the TRN we use are higher connected, and the
majority of genes have connections of five or less (at a
fraction of 0.8692). Although there are some genes that are
highly connected (19 genes have connections of 61 or
more), the fraction is low (0.00621). From column NG2
and F2, we see cancer genes are not necessarily highly
connected; actually, the number of connections of cancer
genes is quite a wide spectrum. There are over 50% cancer
genes having connections of five or less, although there are
also nine cancer genes that are highly connected (with a
fraction of 0.1111). Comparing NG2/F2 to NG1/F1, we
see (1) the average connectivity of cancer genes is slightly
larger than that of all the genes and (2) the percentage of
cancer gene is higher in highly connected genes than in less
connected genes (42 cancer genes in 2658 genes with
connections of five or less, but nine cancer genes in 19 genes
with connections of 61 or more). Comparing NG3/F3 to
NG2/F2, we see number of connections of core genes have
a similar spectrum to that of the cancer genes with a
slightly higher average number of connections (13 genes
having connections of five or less, with a fraction �0.29; 12
genes having connections of 61 or more, with a fraction
�0.27).
The above results prove that (1) core genes we located
through our TTP5 mechanism are not all highly connected,
instead the number of TF mediated connections of these
genes vary from 1 to 61 or more; (2) although the highly
connected genes are more probable to be cancer genes,
cancer genes are not necessarily to be highly connected
genes (see NG2 in Table 4); (3) most importantly, one
would be able to locate cancer genes by searching for
extremely highly connected genes in a network, but he will
lose the majority of cancer genes that are much less
connected, however, using our TTP5 mechanism, we could
not only locate most of the highly connected cancer genes
(here 9 out of 9), but also some of the much less connected
ones (see NG4 in Table 4), which would have been missed
via a search that assumed a strong coloration between
genes with high connectivity and those which are cancer-
related. Therefore, we believe that the over-representation
of cancer genes in our TTP5 genes is biologically mean-
ingful and our methodology to locate these genes is valid.

4. Discussion

4.1. Microenvironmental control of self-organized

asymmetric division

In the present theory, differentiation accompanying
division creates daughter cells in distinct stable states
through ‘‘symmetry-breaking instability’’. Symmetry-
breaking is a general phenomenon that can take place in
systems involving two or more subsystems (i.e. daughters
of a dividing stem cell). Conditions necessary for this self-
organized asymmetry include nonlinearity in the reaction-
transport processes, maintenance of far-from-equilibrium
conditions, exchange of mass and energy between the

http://embryology.med.unsw.edu.au/DNA/DNA10.htm
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subsystems and feedback mechanisms among the operating
processes (see the monographs Ortoleva, 1992; Ortoleva et
al., 1994). A commonly quoted scenario is that the
feedback in a multi-compartmented system amplifies
omnipresent fluctuation into the symmetry-broken (i.e.
patterned) state. However, the familiar reaction-transport
laws are meant to apply to the average behavior of a
system; as the level of noise increases, one might expect
that the lows of average behavior change. In the case of the
stem cell as modeled here, we found that this leads to a
more complex role of noise. As noise increases from zero,
the onset time of asymmetry decreases as one might expect.
However, as noise increases further, the fraction of
daughter cells that are delivered to different state actually
decreases. This implies that the decision for a stem cell to
divide symmetrically or asymmetrically depends on the
noise in the environment. This could yield the evolutionary
advantage for stem cell to have a higher percentage of
replication relative to asymmetric division when uncertain-
ties in the surroundings are high—i.e. the multi-cellular
system should not put too much reliance on only a few
stem cells in an uncertain environment.

A human cell has roughly 25,000 genes and an extremely
complex network of nonlinear TTP processes. This net-
work can support a tremendous number of distinct stable
states (Qu et al., 2007). We believe it may be the special
structure of a stem cell’s TRN that enables symmetry-
breaking during its division, and allows a stem cell’s great
potential to differentiate into a myriad of cell types.
Therefore, constructing a human stem cell TRN using the
methods introduced here and compare its implications with
observed stem cell behavior seems to hold great promise
for developing a predictive model for stem cell differentia-
tion. It is appropriate to assume that while a stem cell has a
number of special characteristics, the overwhelming
majority of its TRN is common to many human cell lines.
Thus we have constructed our stem cell TRN from data on
a typical human cell but have sought special subnetwork
motifs within it that have self-organizational potential.
Proceeding in this way, we identified 12 motifs that could
support taking stem cell differentiation from a genome-
wide perspective.

A stem cell’s microenvironment is critical in initiating its
decision to replicate or differentiate (Li and Neaves, 2006;
Fuchs et al., 2004; Tumbar et al., 2004; Rizvi and Wong,
2005). Multiple contributing influences are relayed via
signaling pathways to the nucleus where transcriptional
responses are elicited. The many factors in the microenvir-
onment, the complexity of signaling pathways, and the vast
scale of regulatory networks make delineating the condi-
tions that favor a given scenario of stem cell behavior a
grand challenge. For example, a given human gene is
activated or deactivated by from 1 to several dozen
different TFs. These TFs are directly or indirectly affected
by many factors in the intracellular medium (e.g. proteins,
enzymes, nutrients) and microenvironment (e.g. cytokine,
estrogen, vitamin D). Thus, there are likely hundreds
factors that can direct a stem cell to divide symmetrically or
asymmetrically. Hence, delineating the favorable condi-
tions for a given differentiation scenario is to discover
zones in a 100-dimensional space of control parameters, a
task as difficult as finding the proverbial needle in a 100-
dimensional ‘‘hay stack’’.
In this study, we developed a theory that seems to

explain how a stem cell can be directed to divide
symmetrically or asymmetrically by the microenvironment,
and provided a practical computer-aided methodology to
discover ways to control stem cell differentiation. In our
theory, there are subnetworks of genes whose TTP
interactions enable symmetry-breaking and self-organiza-
tion of the dividing stem cell into a replicate daughter and a
differentiated daughter. The stem cell’s decision is regu-
lated by its microenvironment. We also developed and
demonstrated an automated procedure for discovering self-
organizing motifs and analyzing their consequences. This
methodology holds great promise to solve complex
problems in pure and applied stem cell research.

4.2. Gene functional category and the TTP5 motif

Molecules involved in stem cell differentiation have been
classified into functional categories, including cell signal-
ing, cell-cycle inhibitors, basal lamina and extra-cellular
matrix molecules (Rizvi and Wong, 2005). In the TTP5
motif (see Appendix A), GY is involved in signaling
pathways, and combines with GZ and helps GX to break
symmetry, which then causes GT and GF to be differently
expressed in the two daughter cells and eventually
differentiates them. In our model GX, GY, GZ and GT are
the core genes that control/deliver cell differentiation,
and the functions of these genes are usually transcription/
translation regulation, signaling transduction and
protein binding. GF genes (available at GenDat) are
controlled by the core genes and determine cell state,
notably the phenotype of the differentiated daughter.
Within each TTP5 network, there are hundreds of GF

genes that cover various functions from RNA binding,
protein synthesis, intracellular signaling and cell surface
reception to metabolism, cell growth, cell cycle/differentia-
tion/proliferation regulation, etc. Thus, the different
expressions of GF genes distinguish the functionality of
the two daughters.
A direct consequence of our theory is that not all genes

are differently expressed in the differentiated daughters.
Although this prediction is consistent with several experi-
mental studies (Ramalho-Santos et al., 2002; Ivanova et al.,
2002; Luo et al., 2002), comparing microarray data on a
human stem cell and its differentiated daughter in detail
(gene by gene) will be critical to prove/disprove our theory.
However, the experimentally verified regulatory interaction
for genes known to be involved in stem cell processes does
not seem to be available in the literature. As a minimal
amount of such data is needed for an analysis, such
validation was not possible yet. This highlights a critical
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research need that could be met by ChIP-on-chip or RT-
PCR studies.

4.3. Strategy to discover controls on stem cell differentiation

Difficulties in control of stem cell behavior for clinical
applications and in attaining a detailed knowledge of the
operating processes involved arise from the complexity of
the regulatory networks, signaling pathways and the many
influential factors in their microenvironment. Our strategy
for addressing these difficulties was to integrate as much of
the intracellular and microenvironmental information as
possible into a predictive TTP kinetic model. Predictions
on transcriptional interactions were made using a training
set of regulatory information, a microarray data-based
information theory/chemical kinetic approach (Sayyed-
ahmad et al., 2007), and a GO similarity bioinformatics
method (Tuncay et al., 2006; Sun et al., 2007), all
integrated via a Bayesian methodology (Sun et al., 2007).
GO similarity and HPRD protein–protein interaction
database (Peri et al., 2003; www.hprd.org) were used to
suggest post-translational reactions and gene functions,
while microarray data and cell biological observations were
used to calibrate the parameters in the TTP model. Having
reconstructed the TTP network and calibrated the rate
parameters, computational simulation enabled the compu-
ter-aided discovery of genes and TFs involved in, and
conditions favoring, a given stem cell’s behavioral scenario.
Our preliminary study demonstrates that such a computa-
tional approach holds great promise to delineate the
mechanism of, and to discover controls on, stem cell
replication/differentiation.

4.4. Relation to cancer

To probe the TTP5"cancer relationship, we con-
structed a probability measure, i.e. the percentage of five
gene groups we discovered from GenDat with a list of
known oncogenes and tumor repressor (henceforth cancer)
genes. The percentages of GX, GY, GZ, GT and GF genes and
randomly selected genes that are cancer genes, are given in
Fig. 9. We see that the probability of GX and GT genes that
are cancer genes greatly exceeds that for genes chosen at
random. It is important to emphasize that the TTP5 genes
were identified via our TRN subnetwork structure, and
were not chosen due to their GO description or con-
nectivity. As in our earlier study (Qu et al., 2007), it
appears that the concept of a ‘‘cancer gene’’ should be
replaced with that of an ‘‘onconetwork’’, i.e. a subset of
genes whose regulatory interactions creates a feedback
loop that enables proliferation, thwarts apoptosis or can
drive the cell into another distinct, abnormal state of the
TTP system. Since the over-representation of TTP5 as a
likely onconetwork motif is clear, we suggest that those
genes in TTP5 networks not yet classified as oncogenes or
tumor repressor genes should also be identified as cancer
related.
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