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SUMMARY

Here, we survey variation and dynamics of active
regulatory elements genome-wide using longitudinal
samples from human individuals. We applied Assay
of Transposase Accessible Chromatin with sequenc-
ing (ATAC-seq) to map chromatin accessibility in pri-
mary CD4+ T cells isolated from standard blood
draws from 12 healthy volunteers over time, from
cancer patients, and during T-cell activation. Over
4,000 predicted regulatory elements (7.2%) showed
reproducible variation in accessibility between indi-
viduals. Gender was the most significant attributable
source of variation. ATAC-seq revealed previously
undescribed elements that escape X chromosome
inactivation and predicted gender-specific gene
regulatory networks across autosomes, which coor-
dinately affect genes with immune function. Noisy
regulatory elements with personal variation in acces-
sibility are significantly enriched for autoimmune dis-
ease loci. Over one third of regulome variation lacked
genetic variation in cis, suggesting contributions
from environmental or epigenetic factors. These
results refine concepts of human individuality and
provide a foundational reference for comparing dis-
ease-associated regulomes.

INTRODUCTION

Understanding the basis of individual variation is a central goal in

genetics and epigenetics. The advent of global gene expression

and chromatin-mapping technologies has greatly increased our

understanding of gene regulatory mechanisms (Degner et al.,

2012; Kasowski et al., 2013; McVicker et al., 2013; Vernot

et al., 2012; Whitney et al., 2003). However, prior methods often

required tens of millions of cells. Investigators were forced to

expand cells through artificial means, such as immortalization

or extensive ex vivo expansion—manipulations that can signifi-

cantly alter the regulatory landscape. Hence, prior studies have

focused on the impact of inherited genetic variation on gene

expression or chromatin states (Degner et al., 2012; Kasowski

et al., 2013; McVicker et al., 2013; Vernot et al., 2012), but the fi-
delity and variation of the human gene regulatory landscape

in vivo are surprisingly not known.

Assay of Transposase Accessible Chromatin with sequencing

(ATAC-seq) is a recently introduced and sensitive method to

map open chromatin sites, predicted transcription factor finding,

and nucleosome position from as few as 500 cells (Buenrostro

et al., 2013; Lara-Astiaso et al., 2014; Lavin et al., 2014), or

even in single cells (Buenrostro et al., 2015; Cusanovich et al.,

2015). Such a comprehensive molecular portrait of predicted

gene regulatory events affords a ‘‘personal regulome’’—a sum-

mary of gene regulatory events in a snapshot of time within a sin-

gle individual. Although ATAC-seq provides a possible approach

to investigate primary human cell types and minute clinical sam-

ples, the feasibility and accuracy of large-scale applications

have not been demonstrated. Here, we generate and analyze

58 high-resolution personal regulomes of a single cell type—

human CD4+ T cells—that comprised over 1.7 billion measure-

ments. We develop methods to integrate diverse sources of

genomic and epigenomic information to address the regulatory

variation as a function of individuality, time, and disease

(Figure 1A).
RESULTS

Landscape and Variation of Personal Regulomes in
CD4+ T Cells
We assessed the landscape and variation of chromatin accessi-

bility in humanCD4+ T cells in 33 samples provided by 12 healthy

donors (Figure 1A). In this exploratory study, we wanted to docu-

ment dominant sources of regulome variation readily evident

from small numbers of healthy individuals; other well-selected

and larger populations are likely to reveal many other potential

contributions to regulome variation. Most donors gave at least

two independent samples, days to months apart; one donor

was sampled six times over 7 months (Table S1). From each

standard 5-ml blood draw, we enriched at least 50,000 CD4+

T cells by negative selection without ex vivo expansion (avoiding

potentially activating antibodies in positive selection) and per-

formed ATAC-seq to map the location and accessibility of regu-

latory elements genome-wide (Supplemental Experimental

Procedures). CD4+ T cells include multiple subsets (including

naive, memory Th1, Th2, Th17, Treg, and Tfh cells); known

frequency counts suggest that these major subsets would be

sampled by our approach (Maecker et al., 2012). Each library
Cell Systems 1, 51–61, July 29, 2015 ª2015 Elsevier Inc. 51
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Figure 1. Landscape of Individual Variation

in T-Cell Regulome

(A) Schematic outline of study design.

(B) Heatmap of regulatory elements with differ-

ential accessibility. Each column is a sample;

each row is an element. Samples and elements

are organized by two-dimensional hierarchical

clustering. Color scale indicates relative ATAC-

seq signal as indicated. Left: samples from the

same donor are labeled with the same color,

and sample ID is coded with gender, donor ID,

sample day, and replicate number; e.g.,

F9D38R1 indicates that this sample is female,

from donor 9 drawn at day 38 and is the first

replicate. Middle: three clusters of differential

accessible elements of interest. Right: correlation

of cluster activity with demographic variables,

and T-cell subtype signatures are shown in cor-

responding colors. The dotted line indicates

that p = 0.01, FDR < 0.05. Clusters i and iii are

associated with gender; cluster ii is associated

with a Th2 signature.

(C) Distribution of the variable regulatory element

associated with attributable demographic fea-

tures.

(D) Significance of the association of the variable

regulatory element accessibility with demographic

features.

(E) Distribution of genomic features of all and

differential accessible elements, respectively.

(F) Scale of variance of genomic features of all

elements with accessibility.
was sequenced to obtain, on average, more than 30 million

paired-end reads. We used ZINBA (zero-inflated negative bino-

mial algorithm) (Rashid et al., 2011) to identify focal peaks of

chromatin accessibility that typify active regulatory elements,

and sequence counts within accessibility peaks were subjected

to quantile normalization to yield a quantitative portrait of active

regulatory elements in each sample. Pearson correlation of

replicates and irreproducibility discovery rate (IDR) analysis

(Landt et al., 2012) indicate high quality of the data and excellent

reproducibility between replicates (Figures S1A–S1D). System-

atic comparison of published ATAC-seq peaks to histone modi-

fication and DNase I hypersensitivity sequencing (DHS-seq)

confirmed that ATAC-seq highlights active enhancers and pro-

moters (Figures S1E and S1F).

To identify individual variation in T-cell regulomes, we applied

intrinsic analysis (Perou et al., 2000), a method that highlighted

elements that varied in accessibility across individuals but not

between repeat samples from the same individual (Figure 1B).

Noisy measurements that vary regardless of donor identity are

filtered out by this approach. We also used permutation analysis

as further protection against noisy data, using signals in

observed, but not permuted, data to estimate false discovery

rate (FDR) (Supplemental Experimental Procedures). The

selected elements reveal complex but distinctive patterns of

activity, so that replicate samples from the same donor at a

same time were always clustered together in unsupervised
52 Cell Systems 1, 51–61, July 29, 2015 ª2015 Elsevier Inc.
hierarchical clustering (12 of 12 pairs). Correlation of the pattern

of regulome activity with known subject variables revealed

potential relationships with gender, self-reported ancestry, and

other individual variation (p < 0.01, FDR < 0.05; Figures 1B and

1C). As CD4+ cells comprise several subsets, the individual

variation observed may reflect variations in cell subset com-

position in addition to gene-specific regulation. Comparison of

chromatin accessibility data (by DNase I hypersensitivity) from

purified T-cell subsets, including Th1, Th2, Th17, and Treg cells,

suggests that some of the regulome variation may be correlated

with cell subsets (Figure 1B, right).

CD4+ T cells from healthy donors exhibited 66,344 accessible

sites in our survey, inferred to be active regulatory elements

(Figure 1C). Approximately 92.8% of these sites showed

invariant activity across individuals and time, indicating a high

degree of fidelity in the regulatory landscape. Nearly 7.2% of

accessible sites (4,769 elements) show significant variable

activity (Z score > 1, FDR < 0.1, and fold change > 5). 24.7%

of these elements varied in accessibility in the same individual

over time and, hence, may reflect dynamic regulation of the

immune system (Figure 1C). The remainder elements showed

stable inter-individual differences, which can be associated

with known variables with different degrees of confidence

(Figure 1D). Notably, gender is the most informative variable, be-

ing strongly associated (p < 10�10) with differential activity of

several hundred elements. In all cases, self-reported gender
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Figure 2. Regulatory Variation in Sex

Chromosomes

(A) Association of gender-specific regulatory

activity with sex chromosomes. Left: heatmap;

color scale indicates relative ATAC-seq signal as

indicated. Middle: bar graph indicates regulatory

elements on chromosomes X (chrX; dark red) and

Y (chrY; dark green). Right: for each regulatory

element, an FDR of significance estimated from

random permutation.

(B) Gene Ontology terms enriched in female (dark

red)- and male (dark green)-enriched regulatory

elements.

(C and D) Male versus female ATAC-seq signals

across (C) an autosome (chromosome 1) or

(D) X chromosome. Dotted lines indicate slopes

of 1 and 2, respectively. Regulatory elements of

X-inactivated and of known, predicted, or novel

escapees from XCI were color coded as described

in the figure. The x axis and y axis indicate the

average ATAC-seq reads per base.

(E) Statistical power of ATAC-seq (red) versus

microarray (blue) to detect known XCI escapee

genes is shown. ATAC-seq requires 11 samples of

each gender, while microarray requires 81 samples

of each gender to reach a power of 0.95 (dotted

line, p = 0.01).

(F) Distribution of genomic features in elements

that are X inactivated (left) or XCI escapees

(right).

(G) Averaged male- versus female-specific ATAC-

seq signals at FIRRE gene locus. The enhancer-

associated histone modification H3K27ac in

mixed-gender samples is shown for comparison.
was concordant with biological sex as determined by chromo-

some complement (discussed later). In contrast, potentially reg-

ulatory impact from ancestry was less significant in this cohort,

and differential accessibility attributable to individual or dynamic

differences is weakly but broadly associated with thousands of

elements. Many elements currently assigned to the ‘‘individual’’

category are idiosyncratic in their differential activity; many are

‘‘private’’ variations that are observed reproducibly in one donor

but not across multiple individuals in our survey. Notably,

although some of the dynamic and individual variation correlated

with Th1 versus Th2 signals, gender—the most significant vari-

able—is not appreciably associated with known cell subsets

(Figure 1B). The variable elements are enriched for distal regula-

tory elements and depleted for promoters, suggesting variation

in long-range gene regulation (Figures 1E and 1F).

Gender-Specific Regulome in T Cells
Next, we focused on gender-specific variation in the T-cell reg-

ulome, because it emerged as the most significant attributable

source of inter-individual variation and because well-studied

mechanisms of dosage compensation provided a rich interpre-

tative framework for understanding our data. In mammals, males
Cell Systems 1, 5
have XY sex chromosomes, whereas

females have XX. Dosage compensation

occurs via random epigenetic silencing

of one of the two female X chromosomes,
termed X chromosome inactivation (XCI), which is heritable

through somatic cell divisions over life (Flynn and Chang, 2014;

Lee and Bartolomei, 2013). XCI is controlled by several long

noncoding RNAs (lncRNAs), including XIST, which is transcribed

from and mediates the epigenetic silencing of the inactive

X chromosome (Xi). Thus, the active X chromosome (Xa) and Xi

harbor distinct chromatin modifications and gene expression

patterns. A subset of X-linked genes escape from XCI in a

tissue-specific fashion through poorly understood mechanisms,

leading to differential X-linked expression in male versus

female cells.

Among regulatory elements with significant differential activity

between male and female cells, a majority (but not all) mapped

to the sex chromosomes (Figures 2A and 2B). As expected,

only male samples showed signal for Y-chromosome-linked

elements, and female samples showed increased activity of

X-chromosome-linked elements. Gender-specific regulomes

may arise from effect of sex-specific hormones, random X inac-

tivation, X-linked escapee genes, or additional differences

(Rubtsova et al., 2015). Sex hormone changes may impact

all chromosomes, whereas the XCI effects are linked to the

X chromosome.
1–61, July 29, 2015 ª2015 Elsevier Inc. 53



Comparative analysis of regulatory activity between males

and females across autosomes (e.g., chromosome 1) revealed

equivalent activity profiles at the chromosomal level, as evi-

denced by a slope of 1 in the two-dimensional plot (Figure 2C).

In contrast, a comparison of males and females across the

X chromosome readily revealed three types of elements: (1) ele-

ments that are dosage compensated and, therefore, have equiv-

alent activity between males and females (slope = 1, gray dots in

Figure 2D); (2) active elements on the Xi and, therefore, are only

active in female cells (slope = infinity; purple dots in Figure 2D;

e.g., XIST); and (3) elements that escape XCI and, therefore,

show a 2-fold increase in activity in female over male cells

(slope = 2; red, blue, and black dots in Figure 2D).

We identified 43 elements associated with 17 coding genes

(e.g., EIF1AX and KDM6A) and 3 noncoding genes known to

escape XCI, as well as elements associated with 7 escapees

predicted by others (Zhang et al., 2013) and 12 XCI escapees

that, to our knowledge, have not been reported previously (Fig-

ures 2D and S2; Table S2). We analyzed the ImmVar dataset,

which measured genome-wide mRNA levels of CD4+ T cells

from 163 healthy male and 244 female donors (Ye et al., 2014).

Gender-specific gene expression profiles validated 16 out of

17 known XCI genes and 6 of 7 novel XCI escapees predicted

by ATAC-seq that had well-measured transcripts (Figure S3A).

We note that escapee genes that were not validated tend to

have lower ATAC-seq signals and mRNA expression compared

to those that were validated (Figure 6), which may be below the

detection confidence of array technology.

Genes that escape XCI in females offered us an opportunity to

compare the accuracy and statistical power of ATAC-seq data

versus standard microarray data (Ye et al., 2014) (Figure 2E).

Such genes are anticipated to have a 2:1 dosage ratio in females

versus males. Whereas ATAC-seq analysis accurately identified

the 2-fold ratio in female versus males across a range of gene

activity levels (Figure 2D), microarrays underestimated the

difference (Figure S4). Using the known XCI escapees that are

detected by both ATAC-seq and RNA microarray analysis

(p value < 10�4, Student’s t test) as positive controls, we per-

formed a power analysis to determine the number of samples

required to have a 95% probability of detecting this true differ-

ence with a significance level <0.01. ATAC-seq requires only

11 samples of each gender, while mRNA microarray requires

81 samples of each gender to reach a power of 0.95 (Figure 2E),

indicating that ATAC-seq is over seven timesmore sensitive than

microarray. The ability of ATAC-seq to detect rare elements (e.g.,

Y-linked sequences inmales) and accurately quantify one versus

two copies of X-linked activity suggests that our methods are

sensitive and precise and could achieve excellent statistical

power with a small sample size.

The comparison of gender-specific regulomes also yielded

unexpected insights that are not possible from gene expression

measurements. For example, we observed that accessible ele-

ments that escape XCI are more likely to be found at promoters

and introns of known escapee genes but not at intergenic distal

regions (Figure 2F). Moreover, our analysis revealed evidence of

gender-specific regulatory landscapes of XCI escapees (Fig-

ure 2G). XCI escape has traditionally been considered simply a

failure of Xi silencing; hence, it was believed that the regulatory

pattern on the Xa will simply be duplicated on the Xi for escapee
54 Cell Systems 1, 51–61, July 29, 2015 ª2015 Elsevier Inc.
genes. Indeed, the term ‘‘XCI escape’’ implies this preconceived

notion; however, there is no direct evidence to support or refute

this model for XCI escape. We identified Xi-specific regulatory

elements on XCI escapees, which have signal only in female,

but not male, cells (Figure 2D, purple dots). For instance, FIRRE

is a recently described X-linked lncRNA that escapes XCI and is

involved in chromosome topological organization (Hacisuleyman

et al., 2014; Yang et al., 2015). RNA in situ hybridization docu-

mented two equivalent RNA foci in female cells and one focus

in male cells (Hacisuleyman et al., 2014). FIRRE contains a series

of putative intronic enhancers embedded throughout its locus,

as documented by the enhancer-associated modification his-

tone H3 lysine 27 acetylation (H3K27ac) in a survey of mixed-

sex cells (Bernstein et al., 2012). Intriguingly, our data suggest

that two FIRRE enhancers in intron 2 are active in male cells,

whereas over a dozen enhancers in introns 2–12 are active

only in female cells (Figure 2G). This regulatory divergence im-

plies gender-specific regulation, allele-specific regulation of

FIRRE on Xa versus Xi, or combinations of both strategies.

Extending the concept of allelic regulatory divergence, the se-

lection pressure for dosage compensation is thought to be the

maintenance of the expression level of homologous gene pairs

on the X and Y chromosomes (Bellott et al., 2014). Analysis of

the regulatory landscape of XY homolog pairs shows that all 15

pairs examined showed divergence on par with, or exceeding

that of, FIRRE alleles, indicating that the regulatory inputs into

the sex-linked gene homologs are distinctive as a rule (Figures

S5A–S5C). These results highlight the value of examining dosage

compensation from the perspective of the personal regulome.

Gender-Specific Regulome of Autosomes Reveal
Propensity for Autoimmunity
The dramatic chromatin accessibility differences between the

genders on sex chromosomes prompted us to examine the

scope of gender-specific differences on autosomes. Gender-

specific regulomes for T cells have special relevance to human

disease because of the strong epidemiological evidence indi-

cating an association between female sex and autoimmunity

(reviewed by Rubtsova et al., 2015). Four out of five patients

with any type of autoimmune disease are female; for some

common diseases, such as systemic lupus erythematosus, the

preponderance of females to males is nine to one. It has been

long postulated that epigenetic or regulatory differences be-

tween male and female immune cells may underlie autoimmune

susceptibility (Rubtsova et al., 2015), but gender-specific differ-

ences are incompletely understood.

We sought to identify gender-specific differences in gene reg-

ulatory networks from ATAC-seq data (Figure 3). DNA transposi-

tion occurs preferentially at nucleosome-free regions adjacent

to transcription factor (TF) binding sites, but the TF binding sites

themselves are protected from transposition. Hence, the pattern

of ATAC-seq reads can directly reveal the binding profiles of

hundreds of TFs whose cognate motifs are known at once

(Buenrostro et al., 2013). One caveat of this approach is that

TF family members that bind similar motifs cannot be distin-

guished. To this end, for each ATAC-seq profile, we identified

enriched TF motifs and factor footprints associated with ATAC-

seq peaks to generate a matrix of predicted TF-to-gene relation-

ships (Sherwood et al., 2014); the inferred regulation is weighted
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Figure 3. Gender-Specific T-Cell Regulome

across Autosomes

(A) Schematic of strategy to construct gender-

specific gene regulatory network. Three TFs—A, B,

and C—are depicted; B and C bind a target gene

differentially depending on gender. Purple arrows

depict expected ATAC-seq signal.

(B) Rank-ordered genes with predicted gender-

specific regulatory variation across their cognate

loci.

(C) Genomic tracks of FGL2 locus showing ATAC-

seq signal in male versus female samples. Top:

differential TF occupancy, defined as the TF

occupancy score in male samples minus female

samples, is shown. Upward signal indicates

greater occupancy in males; downward signal in-

dicates greater occupancy in females. The identity

of the TF with gender-specific signal is show-

n.Bottom: zoom-in view to visualize the ATAC-seq

footprint at an IRF motif.

(D) Rank-ordered TFs with gender-specific varia-

tion in occupancy profiles.

(E) Genomic track of NeST-IFNG locus; gender-

specific signal displayed as in (C).

(F) Functional enrichment of the top 1,000 genes

with gender-specific differences in ATAC-seq

signal. Black indicates Gene Ontology terms. Red

indicates disease terms.
by the distance of the element to the transcription start site of

each gene (Figures S5D and S5E; Supplemental Experimental

Procedures). The end result is a set of active TF regulators and

their cognate sites on each gene for each individual. We then

compared male versus female samples for differences in this

predicted regulatory matrix (Figures 3A–3D; Figure S6F).

At the level of target genes, we found several hundred genes

that show significant differences in their predicted regulatory

network in male versus female T cells (Z score R 2; Figure 3B;

Table S3). The scale of variance—defined here as the pattern of

regulation in one gender that differs from the regulatory pattern

of the other gender (1 � the square of Pearson correlation of

male versus female)—ranges from 0.13 to 0.61 for the top 100

genes; hence, such gender-specific variation is likely more

modulatory than deterministic. Ranking autosomal genes by

gender-specific regulatory variance revealed that the top diver-

gent genes include many genes with well-known and important

function in immune function or development, including FGL2,

GZMK, IFNG, CRTAM, CARD16, FYN, IL2, and IL6 (Figure 3B).

Indeed, significant gender-specific differences in T-cell produc-

tion of IFN-gamma and interleukin-2 (IL-2) have been docu-

mented in healthy children (Wiegering et al., 2009), validating

our unbiased approach. IFN-gamma is also known to be affected

by sex hormones (Rubtsova et al., 2015). In addition, direct mo-

lecular counting via Nanostring nCounter analysis of GZMK,

IL2, IL6, and NLRP2 transcripts indicates significant gender-

divergent responses to T-cell activation (Figure S3B), which
Cell Systems 1, 5
also supports our discovery (Ye et al.,

2014). In summary, among the top 500

predicted gender-specific genes, the

mRNA levels of 30 were measured using
Nanostring, of which 20 showed significant differential expres-

sion between males versus females (p < 0.05, Student’s t test).

FGL2 stands out because it is the number one gene in the

entire genome for gender-specific variance in chromatin acces-

sibility and because the variance is nearly twice that of the next

most variable gene (Figure 3C). FGL2 shows greater promoter

ATAC-seq signal in male than in female T cells, and analysis of

specific TF signals revealed that interferon-regulatory factor

(IRF) family members and NHLH1 TFs are bound in male, but

not female, T cells (Figure 3C). Notably, FGL2 encodes a fibrin-

ogen-like protein secreted by regulatory T cells and other cells

that has immunosuppressive activity (Marsden et al., 2003).

Mouse knockout showed that Fgl2 is required for Treg function

and prevention of spontaneous autoimmunity (Shalev et al.,

2008). Similarly, CRTAM encodes a T-cell adhesion molecule

that has been recently recognized to critically control the differ-

entiation of CD4+ cells into inflammatory Th17 cells (Cortez

et al., 2014). Thus, gender-specific regulation of FGL2 and

CRTAM (which, to our knowledge, has not been reported) may

contribute, in part, to gender-linked differences for autoimmune

disease.

Extending this concept to the top 1,000 differentially regulated

genes, we note that these genes are significantly enriched for

biological functions in defense response, response to virus, im-

mune complex, and inflammatory disease (p < 10�6 for each,

FDR < 0.05, hypergeometric test; Figure 3F). The regulatory ele-

ments of many well-expressed genes, such as housekeeping
1–61, July 29, 2015 ª2015 Elsevier Inc. 55



genes, are surveyed in these experiments but did not show

gender-specific differences. Thus, gender-specific regulation

in T cells is focused on genes with coherent biological function

that impact immune function and autoimmunity.

To understand the mechanisms of gender-specific regulome

divergence, we examined TF regulators that may exhibit

gender-specific activity. In contrast to the �1,000 target genes,

we observed just a handful of TFs with gender-associated diver-

gence (Figure 3D; Table S3). Among the most divergent is ESR2

(encoding estrogen receptor beta); its differential can be under-

stood based on the female hormone estrogen and serve as a

positive control. The top divergent regulator maps to the cognate

motif of ZBTB3, a little studied factor. ZBTB3 is poorly expressed

in CD4+ cells; hence, this motif may be recognized by another

zinc-finger family protein. Two notable gender-divergent regula-

tors are IRF family members, encoding well-studied TFs acti-

vated by interferon signaling and other signals in innate and

adaptive immunity responses that can cooperate or compete

with other TFs to exert regulatory effects (Ikushima et al.,

2013). Thus, a large number of genes were differently regulated,

but the differential regulation was associated with a small num-

ber of TF motifs that repeatedly showed differential activity

across many genes. This result suggests that a small number

of regulators may impact a large number of target genes to yield

the observed male-female divergence in the regulome.

The IFNG locus emerged as a prime example of intersection of

predicted regulatory divergence of both regulators and target

genes (Figures 3B and 3E). IFNG is the third most divergent

gene in our analysis. IFNG encodes interferon gamma and is a

key regulator of immune response and Th1 cell differentiation.

Multiple studies have documented gender-specific association

of allelic variants at IFNG regulatory elements or IFNG protein

levels with human disease. For example, IFNG variants are asso-

ciated with multiple sclerosis (Kantarci et al., 2008) and asthma

(Loisel et al., 2011) in males, but not females, but the mecha-

nisms are not known. NeST (also known as IFNG-AS1 or

TMEVPG1) is located proximal to IFNG and encodes an lncRNA

that is required to program active chromatin state and promote

expression of IFNG (Gomez et al., 2013). NeST is convergently

transcribed relative to IFNG, and a long isoform of NeST is tran-

scribed through the IFNG promoter. NeST itself is induced by

Th1 polarization (Hu et al., 2013), and murine NeST was first

discovered as a genetic locus that controlled pathogen resis-

tance and immune-mediated demyelinating disease (Bihl et al.,

1999).

We found that human IFNG and NeST show gender-specific

regulation (Figure 3E). A cluster of elements nearest to 50 of
IFNG is equally active in male versus female cells, but high-res-

olution analysis indicated that IRF family members occupied

these sites more strongly in males, but NF-YA and CST6 did

so in females. Males also have higher TF occupancy of NeST.

These results suggest that positive regulatory loops comprising

NeST, IRF, and IFNG may differ in a gender-specific fashion.

Consistent with this idea, careful genetic analyses showed that

NeST locus mutation has stronger pathogenic impact in male

than in female mice (Bihl et al., 1999). The fact that our unbiased

approach, examining target genes and regulators, indepen-

dently nominated IFNG highlights interferon signaling as a major

gender-specific regulatory feature in T cells. Our results support
56 Cell Systems 1, 51–61, July 29, 2015 ª2015 Elsevier Inc.
the considerable epidemiologic and genetic evidence of IFNG

involvement in gender variation of immune function and autoim-

munity and enrich this evidence by nominating specific TFs and

lncRNA as potential players in this mechanism.

T-Cell Chromatin Accessibility Variation Is Enriched
at Sites of Causal Genetic Variants for Autoimmune
Diseases
To understand how inherited DNA variation may underlie varia-

tions in personal regulomes, we intersected the set of variable

regulatory elements with a previously curated set of SNPs,

particularly SNPs linked to human diseases or variation in chro-

matin state or gene expression (Boyle et al., 2012; Farh et al.,

2014). Prior work indicated that most DNase I hypersensitive

site quantitative trait loci (dsQTLs) with strong effect size acted

in cis, meaning that they affected the chromatin feature where

the SNP itself is located (Degner et al., 2012). We identified the

genotypes using sequencing information in ATAC-seq peaks

and validated them by standard SNP genotyping of a subset of

donors (Figures 4A and 4B; Figures S6A and S6B). In addition,

we imputed unmeasured SNPs by applying a standard imputa-

tion method IMPUTE2 (Howie et al., 2009), using haplotypes

from the current version of 1000 Genomes as a reference. We

found that 48% and 18% of the 4,769 variably active elements

overlapped detected or imputed SNPs, respectively (Figure 4C).

Thus, more than a third (36%) of regulome variation occurs in

the absence of genetic variation in cis. Prior data further indicate

that only a small minority (<1%) of SNPs can significantly explain

variation in chromatin accessibility (Degner et al., 2012). Addi-

tional contributions of personal regulome variation may include

trans-acting genetic variants, environmental and epigenetic

factors, and variations in cell subset composition.

We discovered that the intersection of personal regulome vari-

ation and genetic variation is highly relevant for human disease.

We obtained SNP sets from the recently published set of causal

autoimmune SNPs (Farh et al., 2014); genome-wide association

studies (GWASs) and expression quantitative trait loci (eQTLs)

SNPs from NCBI, HapMap, and dbSNP138; disease SNPs (of

all organ systems) from RegulomeDB (Boyle et al., 2012); and

de novo SNPs from donors (Supplemental Experimental Proce-

dures). First, we asked whether ATAC-seq peaks of CD4+

T cells, representing active regulatory elements, are enriched

in SNPs as a class compared to the remainder of the genome.

Autoimmune casual SNPs are strongly enriched in CD4+ T-cell

ATAC-seq peaks (p < 10�15, binomial test) (Figure S6C), consis-

tent with the idea that causal genetic variants in autoimmune dis-

eases impact immune cell enhancers (Farh et al., 2014). Second,

we tested whether ATAC-seq peaks that show inter-individual

variation are enriched for disease or eQTL SNPs compared to

invariant open chromatin sites in CD4+ T cells. We found that

autoimmune causal SNPs were most significantly enriched in

variable peaks compared to invariant open chromatin sites (Fig-

ure 4D), including causal variants for type 1 diabetes, rheumatoid

arthritis, lupus erythematosus, Crohn’s disease, and vitiligo

(Table S4). As negative controls, generic SNP sets from GWASs

of all diseases or eQTLs (which are not T cell specific) showed

no significant enrichment. Collectively, these results illustrate

the biological significance of the variable regulatory elements,

and variability in chromatin accessibility across individuals
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Figure 4. Intersection of Regulome Varia-

tion with Genetic Variation

(A) Example of a reproducible regulome variation

without underlying sequence variation. Rep1 in-

dicates replicate 1, and Rep2 indicates replicate 2.

(B) Example of a reproducible regulome variation

with underlying sequence variation; genotype of

the two SNPs in each individual is indicated.

(C) Regulome variation intersection with detected

SNPs (dark blue) and imputed SNPs (light blue).

Over a third of variable peaks do not intersect with

SNPs (light purple).

(D) Enrichment of the indicated classes of SNPs

in variable ATAC-seq peaks versus invariant

peaks. Autoimmune causal SNPs showed highest

enrichment.
emerges as a novel feature associated with locations of causal

disease SNPs. Variable elements are, by definition, ‘‘noisy’’

and capable of being readily switched on or off—properties

that may enable even a single-nucleotide mutation to change

its activity (Farh et al., 2014).

Regulome Dynamics in T-Cell Activation
Personal regulomes can also be interpreted with the help of

in vitro experiments that create an interpretative framework.

We measured changes in the chromatin accessibility caused

by specific hypothesis-driven perturbations in vitro and exam-

ined whether any of the same changes occurred in patient-

derived samples in vivo. We illustrate this concept by assessing

the regulome dynamics during T-cell activation. We isolated

CD4+ cells from donor 1 and stimulated them with PMA and

ionomycin; collected cells at 0, 1, 2, and 4 hr or 0 and 4 hr of

unstimulated controls in duplicate; and performed ATAC-seq

to map the regulatory elements genome-wide.

We identified 1,513 regulatory elements that gained or lost

accessibility upon T-cell activation from 1 to 4 hr (Figure 5).

770 elements, mapping to 591 genes, gained accessibility (pre-

sumably induced), while 773 elements, mapping to 593 genes,
Cell Systems 1, 5
lost accessibility (presumably repressed).

By comparing genome-wide mRNA mi-

croarray data in normal human CD4+

T cells (Ye et al., 2014), we found that,

on average, genes that gained ATAC-

seq signal showed significantly increased

mRNA levels upon activation (p = 5 3

10�16), and, conversely, genes that lost

ATAC-seq signal also had decreased

mRNA expression (p = 3 3 10�4; Fig-

ure 5A). For gene loci that gain chromatin

accessibility, 61 showed increasedmRNA

level by more than 2-fold in mRNA ex-

pression, while only one gene showed

decreased mRNA level. Thus, chromatin

accessibility and gene expression are

highly concordant, as anticipated. This

finding further validates the accuracy of

ATAC-seq and our mapping of regulatory

elements to genes. As expected, regula-
tory elements that gain accessibility during the T-cell activation

show significant Gene Ontology enrichment in regulation of

immune system processes, leukocyte activation, and immune

response (p < 10�10; Figure 5b). T-cell activation strongly acti-

vates a suite of genes, including IL-2, in part through the inducible

TF NFAT (Northrop et al., 1994). ATAC-seq data visualized

enhancer activation at the IL2 locus and identified inducible

TF footprints of NFAT that is validated by published NFAT

ChIP-seq (Figures 5C–5E).

Next, we used the T-cell activation regulome to interpret

personal regulome variation. We discovered that a set of regu-

latory elements exhibiting inter-individual variation strongly

corresponded to elements that are coordinately deactivated

with T-cell activation; this very same cluster is also associated

with elevated Th2 gene signature (Figure 5F, cluster ii). Thus,

a previously unassigned set of personal regulome variation

may be related to the state of T-cell activation in these donors.

At a broader level, this new result illustrates the general concept

that we can use ATAC-seq profiles from laboratory-based, well-

defined perturbations or cell populations to interpret the com-

plex regulome patterns observed in clinical samples across

real populations.
1–61, July 29, 2015 ª2015 Elsevier Inc. 57
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Figure 5. Regulome Dynamics during T-Cell Activation
(A) Left: heatmap showing time course of regulatory elements with differential ATAC-seq activity during T-cell activation. Each column is a sample; each row is an

element. Samples and elements are organized by supervised hierarchical clustering. Color scale indicates relative ATAC-seq signal as indicated. Samples from

untreated control and 4-hr control are indicated in green, and T-cell activation at 1, 2, and 4 hr are indicated in orange. Right: boxplots of mRNA expression levels

of the indicated genes in untreated control CD4+ T cells or after 4 hr activation with anti-CD3/CD28. Number of replicates = 15. p value was estimated from

Student’s t test.

(B) Gene Ontology terms of regulatory elements gain in accessibility during T-cell activation.

(C) Dynamics of ATAC-seq signal at IL2 locus (orange track) during T-cell activation (TCA) at the indicated times. NFAT ChIP-seq data in Jurkat cells (purple track)

is shown for comparison.

(legend continued on next page)
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Figure 6. Scale of Regulatory Variation as Function of Individuality

versus Disease

Regulome variation in CD4+ T cells derived from normal donors (green), during

T-cell activation (blue), or in T-cell leukemia (red) are ranked and compared.

There are 32, 517, and 1,800 regulatory elements in normal, T-cell leukemia,

and T-cell activation, respectively, whose variance is greater than 2.
Regulome Variation in the Context of T-Cell Activation
and Cancer
Finally, we explored the scope of regulome variation across

individuals versus that with cell stimuli or a disease state.

Although comparison of regulomes in disease versus health

may be a powerful approach to understand disease mecha-

nism, an underlying assumption in cross-sectional studies

(i.e., comparing different individuals who are healthy versus

sick at the same point in time) is that the disease-relevant var-

iations significantly outnumber inter-individual variation—an

assumption that needs to be tested. To this end, we compared

ATAC-seq at four time points of human CD4+ T cells activated

with ionomycin and phorbol ester (n = 10 samples), as well as

leukemic CD4+ T cells isolated from patients in the leukemic

phase of CD4+ cutaneous T-cell lymphoma (CTCL; n = 15 sam-

ples). We found that the regulome dynamics in cancer and

T-cell activation are at least 10- to 100-fold greater than in-

ter-individual variation (Figure 6). Notably, for the largest ampli-

tude differences (>5-fold), the number of variable elements

in these different states starts to converge, highlighting the

importance of knowledge about inter-individual variation to

interpret disease-associated data. T-cell activation may exhibit

greater regulome variation in this analysis because the cell

population is temporally synchronized with respect to stimula-

tion, whereas the leukemia samples are not. These results

demonstrate the feasibility of using these data as a founda-

tional reference to which disease-associated regulomes can
(D) Visualization of ATAC-seq footprint for TF NFAT (motif shown) in control cell

across all NFAT-binding sites in the genome were aligned on the motif and avera

(E) Boxplots of mRNA expression levels of IL2 in untreated control (green) and 4-h

and microarray (right). mRNA level from 355 or 15 healthy donors were measu

estimated from Student’s t test.

(F) Use of regulome signature of T-cell activation to interpret individual variation

personal variation from healthy donors (right) are shown. Cluster ii from Figure 1B

correlated with a Th2 signature. Donor sample dendrogram and demographic co
be compared. CTCL-specific regulome differences will be pre-

sented in detail elsewhere.

DISCUSSION

Here, we evaluate the feasibility of using a recently introduced

and sensitive genomic technology, ATAC-seq, to visualize the

personal regulome from a standard blood draw, the most com-

mon source of human samples for clinical diagnostics. This

work expands the number of primary human cell samples stud-

ied via ATAC-seq by 20-fold, and we provide foundational data

and methods to compare and visualize differences in personal

regulome. We were able to enumerate the number, location,

and potential sources of in vivo variation in chromatin accessi-

bility on a genome-wide scale, providing several notable and

unexpected findings. Our cohort was not designed to test

many possible potential contributors of regulome variation, and

lack of association here does not rule out their roles. Rather,

these data serve as a starting point to understand potential

sources of variation in chromatin accessibility in the population.

Our analyses suggest that sex is a major source of individual

variation in the T-cell regulome. We demonstrated the capacity

of ATAC-seq to detect even 2-fold differences in chromatin

access, and many predicted regulome differences were vali-

dated by independent gene expression measurements. We

identified X-linked chromatin accessibility sites that are more

active in female versus male T cells, which nominated elements

associated with escape from XCI in female cells. We further

identified autosomal sites that have differential accessibility

between sexes, which may relate to differences in sex hor-

mones, indirect regulation from sex-chromosome dosage,

or other sex-related associated differences (Rubtsova et al.,

2015). Variation between sexes has its root cause in genetics

from the differential inheritance of sex chromosomes, which, in

turn, leads to epigenetic differences in dosage compensation

and organismal differences, such as different hormonal environ-

ments and life history events. These events are often linked to

social or cultural roles that can also impact physiology. Our

work adds to the increasing recognition of sexual dimorphism

at the molecular level across many organs (Rinn et al., 2004).

Building on the large body of epidemiologic and clinical data

for gender differences in immune function and autoimmunity,

our results nominated specific genes, transcription factors, and

predicted regulatory circuits as potential drivers of gender differ-

ences for future studies. Similarly, we found that the majority

of the variations in the regulatory landscape may go beyond

genetic variation; such regulatory variation may arise from

epigenetic differences from life history or environmental factors,

such as the microbiome that offers many opportunities for future

investigations (Yurkovetskiy et al., 2013).
s (green) versus cells after T-cell activation for 4 hr (orange). ATAC-seq signal

ged.

r T-cell activation with anti-CD3/CD28 (orange), obtained from Nanostring (left)

red by Nanostring or microarray, respectively. Log2 data are shown; p value

. Regulatory element accessibility during T-cell activation in vitro (left) versus

is found to exhibit coordinate deactivation during T-cell activation and is also

rrelation are as in Figure 1B.
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Finally, comparison of regulome variation in healthy donors

versus those with disease documented the feasibility of using

the personal regulome approach to investigate disease bio-

markers andmechanisms. The added value of regulome analysis

over mRNA biomarkers may arise from the fact that casual SNPs

associated with human diseases predominantly impact distal

enhancers (Farh et al., 2014) and, therefore, cannot be assessed

by traditional mRNA measurements alone. Recent discovery

of widespread allelic bias in enhancer-promoter interactions

motivates the need for regulome analysis in addition to RNA

measurements (Dixon et al., 2015), as exemplified by our detec-

tion of the differential regulatory landscape of FIRRE in males

versus females. Furthermore, regulome analysis may directly

investigate chromatin or TF pathways that are direct drug tar-

gets. While useful, potential limitations of ATAC-seq for personal

regulome prediction include Tn5 sequence bias, sensitivity as

a function of sequencing depth, and cell-type heterogeneity.

Integration of additional epigenomic measures, such as direct

TF binding or enhancer RNA synthesis, may improve enhancer

activity prediction (Dogan et al., 2015). As more than 1 billion

blood samples are obtained per year in the United States alone

(Becich, 2000), using ATAC-seq to monitor personal regulomes

in health and disease offers many exciting possibilities.

EXPERIMENTAL PROCEDURES

Enrichment of CD4+ cells from peripheral blood, ATAC-seq, and primary data

analysis were as described (Buenrostro et al., 2013). Differential peaks were

defined via intrinsic analysis, with a cutoff of Z score > 1, fold change > 5, and

an FDR< 0.1. The variance of each peakwas calculated using the ‘‘var’’ function

in R. Gene ontology enrichment scores were obtained from GREAT. Statistical

power analysis was performed using the ‘‘pwr.t2n.test’’ function in R. TF foot-

printing analysis was performed using PIQ v1.2 (Sherwood et al., 2014), with

input motifs set from JASPAR. Donor DNA was genotyped using Illumina Hu-

manOmni2.5-8+ v1.1 DNA Analysis BeedChip Kits. De novo mutation calling

was performed using VarScan v2.2.8, and unmeasured SNPs were imputed by

IMPUTE2. Enrichments of SNP sets were estimated by binomial test in R.

Complete methods are available in the Supplemental Information. Compu-

tational script used are available in Data Analysis Codes (Data S1).
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The accession number for genomic data reported in this paper is GEO:

GSE60682. The accession number for processed data in BAM format reported

in this paper is NCBI Sequence Read Archive (SRA): SRP059154.
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