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Abstract

It is hypothesized that the many human cell types corresponding to multiple states is supported by an underlying nonlinear dynamical

system (NDS) of transcriptional regulatory network (TRN) processes. This hypothesis is validated for epithelial cells whose TRN is

found to support an extremely complex array of states that we term a ‘‘bifurcation nexus’’, for which we introduce a quantitative measure

of complexity. The TRN used is constructed and analyzed by integrating a database of TRN information, cDNA microarray data

analyzers, bioinformatics modules, a transcription/translation/post-translation kinetic model, and NDS analysis software.

Results of this genome-wide approach suggest that a cell can be induced to persist in one state or to transition between distinct states;

apparently irreversible transitions can be reversed when the high dimensional space of extracellular and intracellular parameters is

understood. As conditions change, certain cellular states (cell lines) are no longer supported, new ones emerge, and transitions (cell

differentiation or death) occur. The accumulation of simulated point mutations (minor changes which individually are insignificant) lead

to occasional dramatic transitions. The genome-wide scope of many of these transitions is shown to arise from the cross-linked TRN

structure. These notions imply that studying individual oncogenes may not be sufficient to understand cancer; rather, ‘‘onconetworks’’

(subsets of strongly coupled genes supporting multiple cell states) should be considered. Our approach reveals several epithelial

onconetworks, each involving oncogenes and anti-tumor and supporting genes.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Classic work in cancer genomics has focused on the
discovery of oncogenes and tumor suppressor genes
(Sassone-Crosi et al., 1988 and Table 1). These are the
elements on which much of our understanding of cancer is
built. The importance of oncogenes as initiators of
directional signaling pathways has been suggested (Vogt
et al., 1999). Models of small sub-networks constructed
around some of these ‘‘key’’ genes have yielded insights
into cancer onset and progression (Obeyesekere et al.,
2004; Hervagault et al., 1991). However, cell transforma-
tion can be genome-wide in scope due to extensive
gene–gene cross-linking in the structure of the human
transcription regulatory network (TRN), and these re-
e front matter r 2006 Elsevier Ltd. All rights reserved.
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stricted models overlook many important effects, as
evidenced by unforeseen drug side-effects and acquired
drug resistance. It is even more difficult for these models to
answer fundamental questions such as why the transition
to cancer may occur without dramatic changes in
chromosomal sequence; why microbes make dramatic yet
reversible changes in metabolism or physiology in response
to environmental variations; and why multi-cellular organ-
isms develop a myriad of differentiated cell types display-
ing major differences in cell behavior with the same DNA
sequence. In this paper, we propose that these diverse
phenomena can be described using one model, and we will
demonstrate this using a genome-wide human TRN.
Equations describing cellular reaction-transport pro-

cesses are nonlinear in concentrations, membrane poten-
tials, etc., therefore, a cell can be considered to be a
nonlinear dynamical system (NDS). Attempts to analyze
cellular NDS problems date back to Turing (1952) who
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Table 1

Most important genes (up to 35) for each of the four zones seen in Fig. 3

Zone 1 Zone 2 Zone 3 Zone 4

1 STAT1 44 MYBL1* 20 NFE2L1 807 HIF1A 1693

2 TP73+ 27 SMAD3 5 FOXO3A 546 NFE2L1 1609

3 FOXO3A 25 POU2AF1 3 TBP 285 STAT3 311

4 NR3C1 25 NR3C1 3 GATA1 267 GLUR 294

5 BRCA1+ 25 POU2F2 2 ATF4 190 TBP 285

6 TP53+ 24 CEBPB 1 NR3C1 143 STAT5B 163

7 STAT5B 19 ZNF148 1 USF2 139 STAT5A 147

8 RELA 18 TFEB 1 JUND 132 STAT2 147

9 NFKB1 17 BRCA1+ 1 DBP 132 CEBPD 83

10 STAT2 16 TCF4 127 USF2 81

11 STAT5A 16 TBX2 108 JUND 79

12 P63 14 KLF2 105 TCF4 79

13 TNFRSF25 14 JUNB 83 TBX2 73

14 ZNF148 13 ZNF148 82 FOXO3A 70

15 POU2AF1 10 NFKB1 68 KLF2 65

16 FOSL2+ 8 FOSL1+ 59 JUNB 55

17 RBL2 8 RUNX1 49 ZNF148 42

18 PAX3 7 TFEB 45 NR3C1 30

19 JUN* 6 MYBL1* 33 FOXA3 23

20 ZNFN1A1 6 FOXA3 32 RUNX1 23

21 SP4 6 BRCA1+ 25 NFKB1 21

22 RXRA 6 ELF1 23 FOSL1+ 18

23 g_+) 6 NFYB 23 BRCA1+ 14

24 g_-) 6 FOXA1 21 RXRA 11

25 g_AGE2 6 RXRA 17 MYC* 10

26 g_AP-3_(1) 6 TFAP4 13 ELF1 9

27 g_ATF-6 6 VDR 12 TFEB 9

28 g_BAP 6 ATF1 10 NFYB 9

29 g_BCL-9 6 YY1 10 MYBL1* 9

30 g_BRCA2+ 6 SPI1* 9 SRF 9

31 g_CARG 6 STAT1 9 FOXA1 8

32 g_CBF1 6 PAX3 8 DBP 8

33 g_CDK4+ 6 PGR 8 ATF4 7

34 g_CLIF 6 HSF1 7 VDR 6

35 g_COUP-TF1 6 TP53+ 7 TFAP4 6

The importance factor is the shaded area shown in Fig. 4 as described in Section 2. Here g_xyz represents the gene that encodes protein xyz. Oncogenes (*)

and tumor suppressor genes (+) are from http://embryology.med.unsw.edu.au/DNA/DNA10.htm.
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proposed the concept of self-organized patterns in inter-
acting cells. Reshevsky emphasized the role of nonlinearity
in biological systems (Rashevsky, 1960) while Kauffman
studied multiple cellular states based on a boolean model
(Kauffman, 1969); these authors suggested that the distinct
steady states supported by an NDS might be distinguish-
able cell lines or types (some normal, some cancerous), and
transitions between these states are associated cell trans-
formations. Later Prigogine and coworkers systematically
described self-organization, demonstrating the importance
of far-from-equilibrium conditions in supporting NDS
phenomena (Nicolis and Prigogine, 1977). Recent research
has focused on cell differentiation (Ortoleva and Ross,
1973a, b), cell modeling (Ortoleva et al, 2003; Novak and
Tyson, 1993), and multiple steady-states analysis (Hanns-
gen and Tyson, 1985; Mochizuki, 2005). Presently, there is
a great interest in delineation gene regulatory networks and
deriving their implications for cell differentiation based on
the integration of genomic, proteomic, metabolic and other
data. Our objective here is to relate the biological
phenomena of distinct cell types to the properties of the
TRN and the NDS effects it supports.
Transitions associated with nonlinear cellular dynamics

are frequently assumed to be caused by mutations that
change the structure of the TRN. For example, cancer may
occur after months or years, leaving the impression that it
is a result of such a rare dramatic mutation. Yet minor
mutations at the local sequence level may leave the
structure of the TRN intact, instead altering, for example,
transcription factor (TF)/gene binding or transcription rate
constants. In the cell system, a minor sequence change can
move a key physicochemical parameter, but no dramatic
change in behavior will occur until a critical state is
reached. At this point, a dramatic transition in RNA
expression and other key cell activity is suddenly triggered
(without changing the basic structure of the TRN). In this
process, no individual point mutation is actually respon-
sible; rather, it is a cumulative effect. It may take years for

http://embryology.med.unsw.edu.au/DNA/DNA10.htm
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Fig. 1. (a) In the simplest model, genes encode proteins which form TFs

that regulate genes. (b) In reality, enzymes, metabolites and cellular

architecture are also key elements of the cell’s nonlinear dynamical system,

represented here as an interaction tetrahedron. The latter is embedded in a

sphere (not shown) that represents extracellular medium.
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a cell line to accumulate enough point mutations to pass
the critical point where the cellular NDS transitions to
abnormal cell behavior.

The notions suggested above can also be applied to cases
wherein the abnormal behavior is induced by, for example,
the presence of an excessive number of copies of a given
gene. Extra gene copies would effectively increase the
transcriptional rate constant for that gene, and this might
move the cell closer to or beyond the point of transition to
abnormality. Thus, patients with an abnormal number of
copies of a given gene may be more vulnerable to the onset
of cancer. This might be the case for erbB2 (also known as
HER2), a gene that is overabundant in 15–25% of breast
cancer patients (Piccart-Gebhart et al., 2005). Our long
term goal is to show how transitions among states of the
cellular NDS can be related to the onset and progression of
cancer in this and similar situations.

It may be argued that in many cases, cell transformations
are irreversible; however, we have shown (Hahn et al.,
1973) that the apparent irreversibility of transitions among
states of an NDS can be overcome. While the system may
not be able to return to a previous steady state by changing
only the parameter that caused the system to leave that
steady state, nevertheless, changes in one or more other
parameters may be able to modify the folded steady-state
branch structure and overcome apparent irreversibility. It
is the existence of many system parameters that allows such
reversibility, and identifying them is a promising area for
cancer treatment discovery.

A human cell NDS, which can be represented schema-
tically by the triangular structure in Fig. 1(a), contains
about 25 000 genes, each associated with many kinetic
parameters for transcription, translation, post-transla-
tional modification, and other processes. There are
thousands of physicochemical parameters needed to
describe the extracellular medium as well as hundreds of
thousands or more cellular state variables (e.g. local
concentrations, membrane potentials, and cell physiology).
These variables reside in a space of millions of dimensions
and may allow reversibility. Furthermore, a real NDS is
better represented as a tetrahedral structure in which the
triangle of Fig. 1(a) interacts with metabolites, enzymes,
and cellular architecture. This tetrahedral network inter-
acts with chemical and thermal factors imposed by the
extracellular medium, making the whole system even more
complex.

We hypothesize that the incredibly complex nesting of
bifurcation structure (which we term a ‘‘bifurcation
nexus’’) is a key aspect of human cell behavior and is
likely a central feature of the onset and progression of
cancer. The complexity of the NDS of a human TRN
supports the possibility of cell transformation, but it also
make it very challenging to construct and analyze the
networks to find the states supported by the human cell
and to identify the nature of, and conditions inducing
transitions among, these states. To overcome this difficulty,
we have developed an automated strategy to discover and
analyze a human cell’s genome-wide network of regulatory
processes. The TRN is constructed from a preliminary
network consisting of known gene-TF interactions, and is
greatly augmented via predictions from bioinformatics
modules. Quantitative transcription/translation/post-trans-
lational process modeling was used to obtain parameters
for the NDS analysis (see Section 2, Appendix A).
In this paper, we apply this strategy to analyze a breast

cancer microarray experiment (Lin et al., 2004), and
demonstrate that the approach can be used to derive the
cell biological implication from microarray data. The
model use is based on a genome-wide network and is not
crafted to arrive at a predetermined conclusion. The results
of the model might be helpful in understanding RNA, TF,
and protein concentrations at a quantitative level that may
facilitate the design of drug cocktails (for example, the drug
cocktails being investigated for certain breast cancers
(Marty et al., 2005; Pietras et al., 1998; Baselga et al.,
1998; Pegram et al., 1999). The automated network
discovery and analysis strategy we have developed (sys-
bio.indiana.edu) will also benefit system biology research in
general.
2. Epithelial cell demonstration

The existence of a variety of human cell types, transitions
among them, and the potential relevance to cancer onset
and progression are considered using the approach out-
lined below. The TRN used was developed via the strategy
summarized in Appendix B. Here we investigate a TRN
constructed for an epithelial cell to demonstrate transitions
between cell states using the NDS analysis and stochastic
cell line trajectory methods of Appendices A and B.
The epithelial cell TRN studied was obtained using

microarray data on the estrogen response of breast cancer
cells (Lin et al., 2004). We first included genes that were
estrogen-responsive in the cDNA microarray data, or that
were otherwise believed to play a key role in breast cancer
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according to the literature. Also included were the genes
that wholly or partially encode the TFs that regulate the
selected genes. The complete list of genes and TFs that
regulate them, as well as the sense (up/down) of the
regulation, is provided in Appendix C. Other data used in
our analysis is summarized in Appendix D and includes
estimates of rate and binding constants for transcriptional,
translational and post-translational processes. The stoi-
chiometry of these processes was obtained from our
GeneDat database of experimentally verified information
gathered from the literature and other public databases.

Additional features of the system investigated are now
discussed. TFs were assumed to be homo-dimerized unless
another type of complex was indicated in GeneDat to be
the active form. The TF/gene interactions used include
those in GeneDat bolstered by those predicted by our GO
analysis of all human chromosomes. The GO predictions
were based on biological function and the assumption that
genes with high GO similarity are likely to be regulated in a
similar fashion. We ran our FTF microarray data
interpreter (see Appendix B) to obtain a TRN that was
most consistent with the microarray data, thereby modify-
ing some TF/gene regulatory interactions and adding
others. Changing some of the TF/gene interactions
obtained from GeneDat is justified as not all regulatory
information used was from the same cell line. In a sense,
the microarray analysis allows us to integrate regulatory
information from a number of cell lines, keeping only those
that are consistent with the observed expression profiles for
the cell line of interest (here human epithelial cells). We
decomposed the resulting TRN to eliminate decoupled
subnetworks and thereby simplify the analysis by reducing
the dimensionality of the problem. This network was
enriched with a few post-translational reactions to inves-
tigate TF activation by phosphorylation. Our chemical
kinetic cDNA microarray analyzer, KAGAN (see Appen-
dix B), was used to estimate TF/gene binding constants and
rate coefficients for transcription when we had high-quality
RNA expression data for a given gene. If high quality
microarray data was not available for a gene, the binding
constants for all its up-regulations were set equal to the
average of the binding constants of all up-regulations
determined by KAGAN, and similarly for down-regula-
tions. A matrix specifying the gene that encodes each TF
component protein, and the proteins that complex to form
each active TF, was extracted from GeneDat. The
equations for the model of Appendices A and B were then
used via an automated preprocessor to generate the
computer-readable set of differential equations required
by a version of the AUTO (Doedel et al., 1991a, b) NDS
analysis package (modified to allow for the many variables
in the model of Appendix A). Parameter values used were
as discussed in Appendix D.

The erbB2 gene is overexpressed in 15–25% of breast
cancers (Piccart-Gebhart et al., 2005) and thus was added
to the TRN studied. The up-regulation of erbB2 by ER81
is indirectly related to the transactivation of ER81 by a
positive feedback regulatory loop. In particular, HER2
(the protein encoded by erbB2) is involved in the
modifications made to ER81 to render it maximally
transactive. These transcription-activating modifications
are the phosphorylation and acetylation of ER81 by
complexes that either include or are stimulated by HER2
(15–18 Goel and Janknecht, 2003, 2004; Bosc and
Janknecht, 2002; Bosc et al., 2001). The participation of
the HER2 protein as a phosphorylation-promoting enzyme
was investigated by adding several equations to the model.
For example, one equation describes erbB2 regulated by
several TFs including ER81*, ER-adestrogen* and c-
MYC*, all assumed here to be dimerized and active in
the phosphorylated (*) state. Other aspects of the model,
such as the translation, complexing, and degradation of all
mRNAs, proteins, and their complexes, were as described
in Appendix A. The final TRN network consisted of 221
genes and 1215 TF/gene interactions, of which 971 were
up- and 244 were down-regulating interactions.
A cell state bifurcation diagram constructed for the

above epithelial TRN is presented in Fig. 2. This was done
to study the effect of the overall level of transcriptional
activity as might be imposed by drugs, varying the
temperature, changing factors controlling ATP levels (e.g.
sugars or O2), or limiting the available nucleotide pool.
Fig. 2(a) shows a complex bifurcation nexus. Here, the
root-mean-square (RMS) RNA level (averaged over all
genes) is plotted vs. the transcription rate forefactor k. This
type of diagram provides a single measure that elucidates
the activity of many genes simultaneously. At a fixed value
of k, Fig. 2(a) suggests there can be as many as nine states.
It is likely, however, that roughly half of these states are
unstable and several may involve spontaneous temporal
oscillations.
To appreciate the biological implications of these many

states, the bifurcation diagram must be examined gene-by-
gene. The projection of the bifurcation diagram onto the
plane of overall rate forefactor and the RNA expression
levels transcribed from ESR1 and TP53 are seen in
Fig. 2(b). These genes are considered as ‘‘key’’ genes in
many cancer related problems. Figs. 2(c) provide the cell
state bifurcation diagram as seen for an individual gene
(TBP). The graph shows at least one multiple-state feature
that appears in different intervals of transcription rate
forefactor values. It also displays a curious multiple-state
feature in the zone of forefactor values between 0.36 and
0.45 nM/h (the same zone as Fig. 2(a)).
In order to quantify the notion of the complexity of a cell

state bifurcation diagram, we introduced several variables.
These variables were chosen to elucidate the multiple
dimensional character of the structure of the cell state
diagrams. According to the model of Appendix A, we
investigate bifurcation structure in the Ng+1 dimensional
space of the number of genes and the single parameter k.
The notions introduced below are designed to be directly
generalizable to a higher number of descriptive variables
and bifurcation parameters.
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First we introduce complexity measures that are ‘‘local,’’
i.e., that apply at a fixed value of k. For a given gene we
compute the variation of the associated RNA level on the
entire range of k. If this variation is smaller than a
prescribed number then that gene is termed invariant and is
dropped from further consideration. For a significantly
varying gene at a given value of k, we compute the number
of features—i.e. the number of times that the RNA level
curve for that gene passes through the fixed k vertical line
at a place that is more than 1% of the total variation of
that RNA level over the whole k range above the
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intersection just below it. The number of such significant
crossings for a given gene, summed over all genes that are
not invariant, is the local number of features. Similarly, the
number of genes contributing to the complexity is the
number of genes for which the maximum minus the
minimum RNA level crossing points at a given value k
exceeds 1% of the overall range of values for the given gene
on the full range of k. These measures are plotted in
Fig. 3(a,b), and display four bifurcation structures between
transcription rate forefactor of 0 and 0.5 nM/h.
For local complexity measures, a zone of features can be

identified. We also constructed a third measure of
complexity that gives information about each of these
zones. For a given gene, we compute the integrated area of
variation as suggested in Fig. 4. All genes with significant
area of variation for a given feature are recorded in Table 1
for the present problem. From this table, it is seen that the
bifurcation features (associated cell states) and transitions
among them, involve multiple genes simultaneously. Such a
collection of genes, when involved in a transition to cancer,
might well be termed an onconetwork. When the network
of genes and cell states involved was especially complex, we
called it an onconexus. The first, third, and fourth zone
identified in Table 1 seem to be examples of a bifurcation
nexus. Many of the genes involved in the four zones noted
in Table 1 are commonly cited as oncogenes or tumor
suppressor genes.
Fig. 5 shows the RNA level of an oncogene (JUN red), a

tumor suppressor gene (BRCA1 blue) and an auxiliary
gene (ATF1 green) as a function of transcription rate
forefactor. JUN RNA shows a rapid increase and then a
sudden decrease in concentration as the transcriptional rate
forefactor increases. The rapid increase in concentration of
BRCA1 RNA follows the increase of JUN RNA, and stays
almost unchanged except for two small s-shaped features in
regions near 0.3 and 0.4 nM/h. The ATF1 RNA shows
almost the same behavior as the BRCA1 RNA. From the
information in our GeneDat database, we know that genes
JUN, BRCA1 and ATF1 form a feedback loop. The gene
JUN encodes TF C-JUN/C-JUN which up-regulates gene
BRCA1; BRCA1 encodes the TF BRCA1/BRCA1 which
up-regulates gene ATF1; gene ATF1 then encodes the TF
Fig. 2. (a) Feature shows the remarkable complexity that we describe as a

bifurcation nexus. The fuller depiction is actually more complex as several

branches have bifurcation points from which other branches of steady or

oscillatory states emerge. As the RMS RNA is shown, crossing of two

branches does not necessarily indicate a branch point—i.e. the fuller

depiction is a curve in a roughly 900 dimensional space of the variables

(i.e. population levels or binding site occupation, RNA levels, etc.) of the

model of Appendix A for this many-gene system. For clarity, we have

subtracted a baseline RNA ¼ 76+146 [rate factor] from the total RMS

RNA. (b) Cell state bifurcation diagram showing two single RNA levels as

a function of transcription rate forefactor. The RNAs of interest are TP53

(the solid curve) and ESR1 (the dotted curve). The region of the rate factor

(x-axis) is in the region where the total RNA level has the first s-shape. (c)

Cell state bifurcation diagram showing RNA level of TBP as a function of

transcription rate forefactor. In an area ranging from transcription rate

forefactor 0.36–0.45 nM/h, TBP shows a complex feature of cell states.
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Fig. 3. (a) Number of bifurcation features along the transcription rate

forefactor axis showing 4 areas that support multiple cell states. The

number of features is computed as the number of distinct RNA

concentration levels at each transcription rate forefactor value. The

criteria of distinction is to exceed 1% of the overall variation (maximum

minus minimum concentration over the full range of the transcription rate

forefactor for that gene). (b) Number of genes considered to have

distinguishable features at each point along transcription rate forefactor

axis showing four areas having multiple states. The criterion of

significance for a gene at a given transcription rate forefactor relies on

whether there are distinct states (i.e., that the RNA concentration

difference is larger than 1% of the variation in RNA level (maximum

minus minimum concentration over the full range of transcription rate

forefactor for that gene)).

Fig. 4. The ‘‘importance factor’’ of s-shaped states is defined to be the

area of the shaded regions shown.
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Fig. 5. Cell state bifurcation diagram showing RNA level of an oncogene

(JUN red), a tumor suppressor gene (BRCA1 blue) and an auxiliary gene

(ATF1 green) as a function of transcription rate forefactor. Curves JUN

and ATF1 use the left vertical scale, while the curve BRCA1 uses the right

vertical scale. This diagram illustrates the behavior of a coupled oncogene,

tumor suppressor gene and auxiliary gene.
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ATF1/ATF1 which down-regulates gene JUN. This
explains the behavior show in Fig. 5. In addition, this
feedback loop could also be considered as a typical motif in
an onconetwork. The up-regulation of a tumor suppressor
gene by an oncogene might suggest a cell self-protection
mechanism, and the indirect down-regulation (through an
auxiliary gene) of an oncogene by a tumor suppressor gene
indicates the necessity of studying the whole genome-wide
TRN instead of focusing on some individual oncogenes.
3. Conclusion and extensions

A supercritical mass of transcriptional regulatory
information, augmented with automated TF-based cDNA
microarray data analysis, and integrated with bioinfor-
matics modules, appears to hold great promise for
achieving a genome-wide understanding of human cell
behavior. Through an NDSs discovery approach and cell
models automatically generated as noted in Appendices A
and B, we have illustrated the feasibility of a workflow
taking multiplex bioanalytical data as input and generating
predicted cell behaviors as output. In this way, transitions
to abnormal states and the structure of the TRN under-
lying them can be discovered.
Human cell behaviors were shown to emerge as distinct

states of the same TRN NDS. This shows that these states
can be a consequence of nonlinearity supported by the
human TRN. Even for a relatively small human gene
subnetwork (i.e. a few hundred genes), we have shown the
emergence of many distinct cell states (types), each
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associated with a distinct cell line and all supported by the
same TRN. Although these data are representative, we
believe we have demonstrated the usefulness of our
integrative, genome-wide approach. We believe that the
rich variety of cell types warrants a new term which we
propose to be ‘‘bifurcation nexus.’’ This term takes on
particular significance due to the intense cross-linking of
the human TRN. Thus, the many cell states cannot be
understood as the juxtaposition of a number of quasi-
independent NDSs, each of which supports a few states of
a largely isolated sub-network.

Cell transformation has been shown to be a natural
consequence of the buildup of otherwise insignificant point
mutations and the prevalence of cross-linked feedback in
the genome-wide TRN. Thus, even if the structure of the
TRN remains unchanged, accumulating point mutations
(manifested as small changes in rate and binding constants)
can result in an avalanche wherein a cell makes a dramatic
genome-wide transition to a qualitatively distinct cell state
with the activation of alternative pathways, hence influen-
cing biochemical processes and response to disturbances in
the extracellular milieu.

The NDS approach implies that apparently irreversible
transitions among cell lines may be prevented or reversed
by simultaneously manipulating a number of factors in the
extracellular medium. This has potentially dramatic health
science implications. For example, a transition to cancer
could be arrested or reversed by a change in lifestyle and a
transition to drug resistance (e.g. to an anti-estrogen) could
be prevented by a change in drug regime or diet.
Alternatively, a chemotherapeutic agent could inhibit one
transition to cancer, only to promote another due to the
complex, often circuitous, network of gene regulatory
interactions. The apparent irreversibility of transitions (e.g.
Fig. 2(a–c)) could be overcome by the simultaneous
application of multiple drugs or by a complex sequence
of treatments. Hence drug cocktails, and the sequence and
timing with which the drugs are administered, indicate a
promising research direction and one which could be
greatly enhanced by a genome-wide TRN perspective.

Deriving the clinical implications of the present ap-
proach requires a careful examination of the nature of the
cell states and transitions between them. The implications
of manipulating the activity of apoptotic or cell cycle genes
can be derived by examining the cell state bifurcation
diagrams, the quantitative information as in Table 1, and
the stochastic cell line trajectories (and statistics of cell
populations via the latter). The effect of evolutionary
procedures could be tested by carrying out Monte Carlo
studies for an ensemble of cell line trajectories. In a coming
world wherein microarray or other techniques could allow
the automated generation of genome-wide, patient-specific
TRNs, an automated approach such as that presented here
could enable the forecasting of specific transitions to
diseased states and allow for the identification of strategies
to avoid or forestall these transitions, and to reverse them if
they have already been made.
The approach presented is readily extended. The
triangular network of Fig. 1(a) (on which the present
study was based) could be upgraded to the tetrahedral one
of Fig. 1(b). In that case, cDNA microarray data must be
supplemented with NMR and proteomics data. With this
and the addition of more regulatory mechanisms to our
modeling approach, we believe that the methods and
workflow demonstrated here will provide practical clinical
benefits.
In conclusion, we suggest that the overall automated

workflow (microarray data to cancer cell biology) holds
great promise for organizing the search for cancer
treatments. Basic concepts such as bifurcation nexus and
onconetwork (large numbers of genes locked in a strongly
coupled network of cancer-related activity) may yield new
ways of categorizing cancers. The genome-wide perspective
we introduce should help in avoiding adverse side-effects
and drug resistance, and in designing multi-target drug
cocktails wherein low doses of several drugs can have a
much greater effect than a high dosage of a single drug.
Given the automated character of our cell state discovery

workflow, it becomes feasible to utilize the large archives of
cancer cell microarray data to calibrate and validate our
approach. Archives such as NIH’s GEO, EBI’s EMBL,
Oncomine, and SBCR could be utilized and selected
subsets of microarray data (e.g. for various epithelial cell
lines) investigated to characterize the distinct features of
their TRNs. As we believe that the additional insights from
this data will enhance the considerable national investment
made to date, the type of workflow we have developed
should be integrated with these archives so that any new
data could be immediately examined, cell state behaviors
predicted, and the distinct TRN features of the cell line
involved discovered.
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Appendix A. Model formulation

Considering the general and genome-wide nature of the
approach we are attempting to achieve, it is critical to
formulate the cell dynamics in a rather general and
systematic fashion. For example, the structure of the
transcriptional kinetic equations should be the same for all
genes; differences between genes are then reflected in the
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matrix of stoichiometric coefficients introduced and the
values of rate and binding constants used.

Gene regulation is described here as a chemical kinetic
network involving the attachment/detachment of TFs at
sites on each gene. Let Pij be the probability that jth site on
gene i is occupied. Site ij is assumed to only be available to
a specific subset of TF types (i.e. competitive binding is
included and there can be multiple sites for a given TF-type
on one gene). In a more general approach, one may
introduce the joint probability for each gene such that
site–site interaction is accounted for, although this is not
done in the present work. If each site is considered to be
independent, however, then the kinetic model used here
takes the form

dPij

dt
¼ kþij T�ijð1� PijÞ � k�ij Pij, (A.1)

where T�ij is the total intra-nuclear concentration of all TFs
that bind to site ij, and all of which bind to site ij in an
energetically similar manner. Letting proteins, protein
complexes and TFs be labeled via an index n. Then

T�ij ¼
Xij

n

Tn, (A.2)

where Tn is the concentration of the nth factor and (ij) on
the sum indicates a limitation to all factors that can bind
and regulate at site ij.

Let bij indicate the nature of the regulation of gene i by
the TFs binding to site j:

bij ¼

þ1; up�regulation;

�1; down�regulation;

0; no regulation:

8><
>:

(A.3)

Introduce a function C(P, b) such that

C ¼

P; b ¼ þ1;

1� P; b ¼ �1

1; b ¼ 0:

8><
>:

, (A.4)

Assuming that a gene is most conducive for transcription
if its up-regulating sites are occupied and its down-
regulating ones are not, the probability Yi, that gene i is
conducive, is taken to be given by

Yi ¼
YN ðiÞ
j¼1

CðPij ; bijÞ, (A.5)

where N(i) is the number of regulatory sites on gene i. With
this, it is assumed that the dynamics of the cellular RNA
content Ri for the single RNA type assumed to be
associated with gene i (i.e. multiple splicing alternates is
ignored) is generated by

dRi

dt
¼ Ai � liRi, (A.6)

1

Ai

¼
1

kmax
i ½RP�fYi þ zig=ð1þ ziÞ

þ
1

A
poly
i

(A.7)
for transcription rate Ai and degradation rate coefficient li.
The first contribution to 1/Ai is due to the rate of RNA
polymerase binding to the gene while the second is due to
polymerization. Thus, A

poly
i ¼ qi=Li where qi is the rate of

nucleotide addition during elongation and Li is the number
of nucleotides to be added to make gene i-associated RNA.
The form of Ai reflects the serial nature of transcription.
RNA degradation can take place by several simultaneous
processes. Thus we write li ¼ lð1Þi þ lð2Þi Li. The second term
is assumed proportional to Li, reflecting the possibility that
the number of sites on the ith RNA at which it can be cut is
proportional to its length, while the lð1Þi term accounts for a
single or few special sites for initiating degradation which
are at endpoints or are relatively inaccessible most of the
time due to the RNA conformation. As noted earlier, a cell
line is specified via calibration of the kmax

i ; li, and other
parameters. Thus, if there is only one RNA type for each
gene under the range of conditions of interest, the above
parameters are to be calibrated for these conditions. If the
splicing is variable over the range of these conditions, then
a multi-channel transcriptional model is required. In (A.7)
kmax

i is the maximum rate, while zi is a small parameter that
allows a minimal rate of transcription even if gene i is not
optimally conducive, and [RP] is the concentration of
intra-nuclear RNA polymerase.
Let molecular type n be encoded by gene In, or arise from

a dimerization or other complexing of subunits. For
example, estrogen, ERa, ERadestrogen, (ERadestrogen)2,
etc. are all considered as factors, many of which are related
through a network of complexing and other post-transla-
tional processes. Let the result of these latter processes
have net rate Wn for the nth factor. With this, the model

dTn

dt
¼ anRIn

� bnTn þW nðT ; cÞ �Un (A.8)

is adopted for rate coefficients an and bn, and set c of
concentrations of other factors (e.g. phosphate, glucose,
etc.). When a TF is simply a translated polypeptide,
Wn ¼ 0; when it arises out of dimerization or other
complexing, then an ¼ 0; when Tn does not regulate gene
i then Un ¼ 0; this imparts a rather general structure to the
model that facilitates implementation of the NDSs
analysis. The contribution Un, which accounts for binding
of TFs to regulatory sites on the Ng genes, takes the form

Un ¼
XNg

i¼1

XN ðiÞ
j¼1

ðnÞ kþij T�ijð1� PijÞ � k�ij Pij

n o
. (A.9)

The (n) restricts the j sum to sites where TF n binds.
A number of assumptions have been made in arriving at

the present model:
�
 Tn, as it affects the probabilityYi, is a concentration and
not a thermodynamic activity as might be more accurate
due to the concentrated conditions within the nucleus.

�
 For eukaryotic cells, the factors kmax

i and an depend on
intra-nuclear nucleotide and cytoplasmic amino acid
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Table 2

Parameters used in AUTO

Zone 1 Zone 2 Zone 3 Zone 4

1 STAT1 44 MYBL1* 20 NFE2L1 807 HIF1A 1693

2 TP73+ 27 SMAD3 5 FOXO3A 546 NFE2L1 1609

3 FOXO3A 25 POU2AF1 3 TBP 285 STAT3 311

4 NR3C1 25 NR3C1 3 GATA1 267 GLUR 294

5 BRCA1+ 25 POU2F2 2 ATF4 190 TBP 285

6 TP53+ 24 CEBPB 1 NR3C1 143 STAT5B 163

7 STAT5B 19 ZNF148 1 USF2 139 STAT5A 147

8 RELA 18 TFEB 1 JUND 132 STAT2 147

9 NFKB1 17 BRCA1+ 1 DBP 132 CEBPD 83

10 STAT2 16 TCF4 127 USF2 81

11 STAT5A 16 TBX2 108 JUND 79

12 P63 14 KLF2 105 TCF4 79

13 TNFRSF25 14 JUNB 83 TBX2 73

14 ZNF148 13 ZNF148 82 FOXO3A 70

15 POU2AF1 10 NFKB1 68 KLF2 65

16 FOSL2+ 8 FOSL1+ 59 JUNB 55

17 RBL2 8 RUNX1 49 ZNF148 42

18 PAX3 7 TFEB 45 NR3C1 30

19 JUN* 6 MYBL1* 33 FOXA3 23

20 ZNFN1A1 6 FOXA3 32 RUNX1 23

21 SP4 6 BRCA1+ 25 NFKB1 21

22 RXRA 6 ELF1 23 FOSL1+ 18

23 g_+) 6 NFYB 23 BRCA1+ 14

24 g_-) 6 FOXA1 21 RXRA 11

25 g_AGE2 6 RXRA 17 MYC* 10
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levels, respectively, and they (as well as [RP]) may vary
in time.

�
 The description is a lumped, whole-cell model so that Tn

and Ri represent numbers of molecules per whole cell
volume; the model does not distinguish two populations
of TFs (i.e. in the nucleus and in the cytoplasm). Also,
the time delays for exchange of TFs and other factors
between the nucleus and cytoplasm are ignored.

The above model was implemented for NDSs analysis to
discover pathways of cell transformation. To do so, we
developed a program that automatically writes the
differential equations as FORTRAN-executable expres-
sions. The parameters kmax

i ; ½RP�; li; k
þ
ij ; k

�
ij ; an;bn, the

matrix b and vector I are user provided. These were
obtained in the present study as estimates either from the
literature or via our microarray data-based calibration
software (see Appendix B and Table 2).

Appendix B. TRN discovery system

The complexity of a mammalian TRN and the limitation
and inaccuracies of cDNA microarray data imply that a
multi-faceted approach to TRN discovery is required. We
have developed a preliminary version of such a system,
implemented as a web-based service (sysbio.indiana.edu).
Our workflow starts with cDNA microarray data (gene
expression profiles) to identify those genes whose expres-
sion change during the phenomena of interest. This list of
responsive genes is used to initiate a query to our GeneDat
database of over 13 000 experimentally verified TF/gene
up/down regulatory interactions for mammalian (mostly
human) cells. This action also creates a file specifying the
gene that encodes each component making up each active
TF, as well as hormones or other factors affecting TF
activity. In sum, this workflow yields an a priori TRN
consisting of the responsive genes, TFs that control them,
and the stoichiometry of associated post-translational
processes. The scope of the TRN can be extended at the
discretion of the user (e.g. adding genes that encode the
TFs that regulate the genes that encode the TFs regulating
the primary responsive genes). In addition, the TRN
assembled contains information on TF complexing and
activation. This a priori network serves as the training set
for several additional TRN construction modules that add
more TF/gene interactions. These modules now include a
TF-based method using cDNA microarray data to correct,
and extend and calibrate a TRN, as well as GO and
promoter analyses to discover new TF/gene interactions.
Each method provides a score for every TF/gene interac-
tion it predicts. With this score and a Bayesian method, we
compute the ratio of the probability for each score in the
training set to that in the random set. Multi-method
integration is attained by assigning a sum-log measure
from the Bayesian ratios for each TF/gene interaction. A
sum-log cutoff is adopted so that only the TF/gene
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interactions with the highest confidence are accepted. In
this way, we have been able to more than double the
number of TF/gene interactions over that in the training
set, even when the confidence cutoff is taken to be high.

The TRN constructed as above can be further refined by
using it as the a priori network for our cDNA microarray
analyzers to ensure that the TRN is as consistent with the
expression data as possible. For example, to establish a
large TRN some of the data assembled from GeneDat
may be from abnormal cells, different cell lines, or
even nonhuman cells; our microarray-based refinement
module is thus critical to screen out spurious data. Finally,
our KAGAN cDNA microarray interpreter provides
estimates of kinetic and binding constants for TRN
processes of Appendix A. Below we briefly review FTF
and KAGAN.

FTF microarray-based TRN construction

FTF is our statistical, TF-based module for discovering
the structure of a TRN. The input to FTF is an a priori
TRN. The output is suggestions for improving the
network. FTF is based on the following notions:
�
 Gene expression data is usually error-prone and thus a
consensus method is needed whereby results from a
variety of genes are synthesized to derive information on
a given gene.

�
 A method based on TFs has the advantage that

microarray noise and error in a user-supplied TRN
can be overcome by statistics—i.e. the regulation of
many genes can be through a given TF, or a small subset
thereof.

�
 Due to data uncertainty, it is usually not likely (except in

rare cases where hundreds of microarrays are available)
that there is enough information to obtain both
TRN structure and the associated transcription and
RNA degradation rate coefficients simultaneously (see
KAGAN below, however).

�
 Network discovery requires many automated trials of

possible networks so the algorithm must be extremely
efficient.

�
 Thus, the objective of FTF is to discover TRN structure

by taking advantage of the statistical robustness allowed
by a TF-based analysis.

The essential FTF equations are as follows. Consider a
system with Ng genes. Then

Tr
n � Ts

n ¼
XNg

i¼1

Hðmr
i �ms

i ÞbinCin,

where Tr
n is the activity of TF n at condition or time r; mr

i ,
the cDNA microarray response for gene i at condition r;
bin, the regulatory network matrix (bin4 or o0 for gene i

up/down regulated by TF n; bin, the 0 for no regulation);
H(x) ¼71 for x4or o0, ¼ 0 for x ¼ 0; Cin, the normal-
ized weight—e.g.

Cin ¼
2Li

2Li � 1

1

Mn

for Li ¼ number of TFs regulating gene i, and Mn is a
normalized factor that is the number of genes TF n

regulates.
The advantage of this analysis is that the Tr

n are obtained
directly, i.e. no differential equations for them must be
solved (as would be the case for a chemical kinetic model,
see KAGAN below). The statistical weight Cin accounts
for the likelihood that a gene controlled by many TFs will
not reflect the activity of any one of them. Finally,PNi

i¼1Cin ¼ 1, i.e. Cin has the character of a normalized
probability.
One can compute Tr

n for TF n from one of the genes it
regulates by keeping the Tr

n; ðn
0anÞ as obtained above. The

correlation of this Tr
n and the one constructed as above

gives a measure of how well the regulation of gene i by TF
n is characterized by bin. Such considerations are the basis
of the gene ranking in FTF (and KAGAN—see below).
As FTF is fast, many alternative bin can be tested
and improvements on the a priori TRN network are
suggested.
KAGAN microarray-based TRN calibration

KAGAN (Karyote Gene Analyzer) is designed to refine
and calibrate a TRN via cDNA microarray data integrated
with transcription kinetic modeling via information theory.
The basic idea is that the rate of transcription depends on
TF activities, thus a chemical kinetic model of RNA level
time courses needs TF activity time courses in order to
solve the equations. However, RNA levels can be
monitored by cDNA microarrays. Using the approach of
Sayyed-Ahmed et al. (Sayyed-Ahmad et al., 2003), we
introduced an error measure (i.e. observed versus predicted
RNA levels) to constrain the probability as a function of
model kinetic and binding constants, and a functional of
the TF activity time courses. We then find the most
probable value of the aforementioned parameters and TF
activity time-courses. The resulting equations for the most
probable quantities are solved numerically and implemen-
ted as the KAGAN module (available through Bio-SPICE
and our website sysbio.indiana.edu).
Appendix C. Supplementary Materials

Supplementary data associated with this article can
be found in the online version at doi:10.1016/
j.jtbi.2006.12.002.

Appendix D

(See Table 3)

dx.doi.org/10.1016/j.jtbi.2006.12.002
dx.doi.org/10.1016/j.jtbi.2006.12.002
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Table 3

Parameters Value Data source

Kb maximum transcription rate as limited by RNA

polymerase binding

�0.72 (nM/h) Slutsky and Mirny (2004). http://

www.arxiv.org/abs/q-bio.BM/0402005

(preprint web site:condmat).

Kt transcription rate due to reading and elongating 1.5–8.5 (nM/h) Tomasz Lipniacki and Pawel Paszek,

http://mbi.osu.edu/2003

l mRNA degradation rate 0.029–1.39 (1/h) www.biology.uc.edu/sophomore/

geneticsf01/lec7.pdf

a translation rate 0.15–0.85 (1/h) Újvári et al. (2001)

b protein degradation rate constant 0.492 (1/h) Averaged from the literature

g+ rate constant of binding for two TFs to TF 2.0 (1/(nM*h)) http://insilico.mit.edu/Overview.pdf

g� rate constant for dimerized TF to dissociate 2.0 (1/h) http://insilico.mit.edu/Overview.pdf

z residual transcription rate factor 0.05 None
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