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Abstract

The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the
pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic
epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic
models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets
that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell
maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3
to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and
prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators
with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for
pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and
functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.
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Introduction

The pancreas is a vital internal organ with exocrine and

endocrine functions. The exocrine pancreas is composed of acinar

cells that secrete digestive enzymes into a branched network of

bicarbonate-secreting duct cells. Endocrine cells form clusters

called islets of Langerhans that secrete hormones such as insulin,

glucagon, pancreatic polypeptide, somatostatin, and ghrelin

produced, respectively, by beta cells, alpha cells, PP cells, delta

cells and a transient population of epsilon cells [1]. Classical

genetic approaches revealed that exocrine and endocrine cells

develop from a common multipotent progenitor that expresses the

transcription factors Sox9 [2] [3], Pdx1 [4], and Ptf1a [5].

Through mouse embryonic development, Sox9+ multipotent

progenitors generate endocrine progenitors that express the basic

helix-loop-helix (bHLH) transcription factor Neurog3 [6], which

produce all pancreatic endocrine cells [7]. Although these

approaches have revealed much about individual factors that

regulate pancreatic development [8], we have yet to understand

the regulatory logic underlying pancreas formation [9].

Genome-scale approaches to organ development can provide

unbiased views of the genetic interactions regulating transient cell

populations such as multipotent progenitor cells and their lineage-

restricted progeny. However, to decipher the regulatory logic that

culminates in successful organogenesis, gene expression in distinct,

developing cell types must be acquired. Then, algorithms that

analyze expression patterns across multiple cell types can be

executed. Such integrated efforts have been used successfully for

studies of hematopoiesis [10] [11]. We postulate that similar

approaches to identify gene sets orchestrating formation and

maturation of pancreas cells should advance islet beta cell-

replacement efforts in diabetic patients. However, the application

of such an approach to solid organs like the pancreas has proven

difficult. In particular, crucial transient cell subsets like multipotent

pancreatic progenitors and endocrine precursors represent a small

fraction of cells in the developing pancreas – making analysis of

these cells challenging. Thus, while prior studies used cell

fractionation and genome-scale analysis of gene expression to

advance understanding of pancreas development [12] [13] [14]

[15] none was able to comprehensively assess purified progenitors

PLOS Genetics | www.plosgenetics.org 1 October 2014 | Volume 10 | Issue 10 | e1004645

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1004645&domain=pdf


and their endocrine or exocrine progeny from multiple develop-

mental stages. Moreover, most previous studies were limited to

pair-wise comparisons of wild-type cells in the endocrine lineage,

thereby precluding powerful inferences from mutant analysis, and

none prioritized or validated multiple candidate regulators by

phenotyping mutant mice.

Here, we used a combination of cell sorting and transgenic cell

labeling to purify and profile twelve pancreatic cell types at specific

stages of development and used methods to optimize RNA

quantification from relatively small numbers of cells. Our data set

encompasses multipotent Sox9+ pancreatic progenitors, Neurog3+

endocrine progenitors, fetal and adult alpha cells and beta cells,

and exocrine cells including fetal acinar cells and adult duct cells.

Statistical comparisons demonstrate the highly reproducible

quality of gene expression profiles obtained. We found that

iterative probabilistic modeling, optimized with data on estab-

lished pancreatic regulators, succeeded in nominating and ranking

scores of novel candidate regulators and their functions. We

validated a subset of these predictions using mutant Neurog3 mice

and by phenotyping pancreas development in appropriate mutant

mice. This comprehensive, integrated effort with discrete, oper-

ationally-defined populations of purified fetal and adult pancreatic

cells provides gene expression profiling at higher resolution than

previously achieved, identifies new regulators of pancreas devel-

opment that are validated in vivo, and elucidates new elements of

the regulatory logic underlying development of the endocrine and

exocrine pancreas.

Results

Purification and gene expression profiling of fetal and
adult pancreatic cells

To dissect developmental mechanisms of pancreatic develop-

ment and maturation, we adopted a strategy using staged mice,

FACS purification of specific cell subsets, genome-scale gene

expression profiling coupled to bioinformatics analysis, and

validation using mutant mice (Figure 1A). Using a combination

of surface markers and transgenic reporter mice, we isolated 12

cell populations and profiled gene expression using GeneChip

microarrays (Figure 1B; Methods). These included embryonic day

(E) 11 cells enriched for Sox9+ multipotent pancreatic progenitors

[3], E15 pancreatic ‘progenitors’ enriched for the markers Sox9

and CD24 [16] [17], E15 Neurog3+ endocrine progenitors

enriched for CD133 and CD49f [16], E15 acinar cells, Glucagon+

alpha cells from postnatal day (P) 1 and 8–12 weeks, fetal and adult

beta cells from E15, E17, P1, P15, and 8–12 weeks, and duct cells

from 8–12 weeks. To our knowledge, comparative analysis of this

range of mouse pancreatic cell types and developmental stages has

not been reported.

To assess the quality and reproducibility of replicate cell

isolations, RNA collection and gene expression profiles, we

obtained the Pearson correlation coefficient of pairwise-compar-

isons between samples and performed unsupervised hierarchal

clustering. This analysis revealed tight clustering of biological

replicates for each cell subset isolated (Figure 1C). We verified the

expression of established pancreatic markers and developmental

regulators [9] for each specific cell type profiled, using microarray

(Figure S1A), or with quantitative PCR for a subset of ultra-

abundant mRNAs encoding proteins like insulin and glucagon,

which can saturate microarray probes (Figure S1B, S1C). Sox9+

E11 and E15 pancreatic progenitor cells were enriched for

expression of expected mRNAs encoding Sox9, cMyc, and

Onecut1. Likewise we confirmed that adult ductal cells were

enriched for expression of Muc1, Sox9, Onecut1 and Hes1 mRNA

(Figure S1A). At multiple stages, purified beta cells were highly

enriched for mRNAs encoding Pdx1, Insulin and Glucokinase,

while alpha cells expressed expected markers, including Pax6,

MafB, Arx, and Glucagon (Figure S1A). Thus, appropriate scaling

of mouse collections overcame inherently low numbers of fetal

pancreatic cell subsets to generate a unique, coherent set of highly

reproducible gene expression data sets spanning multiple pancre-

atic cell lineages and developmental stages.

Pearson correlation and unsupervised hierarchical clustering

analysis revealed grouping of cell types and their gene expression

based on developmental stage, and exocrine or endocrine

function. Undifferentiated fetal pancreatic progenitors from E11

clustered closest to E15 progenitor cells and E15 acinar cells

(Figure 1C). E15 Neurog3+ endocrine progenitors clustered closely

with fetal alpha cells and beta cells, forming a cluster distinct from

fetal progenitor, ductal and acinar cells. Adult duct cell gene

expression clustered with that of E11 and E15 pancreatic

progenitors cells, instead of other adult cells, likely reflecting the

postulated origins of pancreatic progenitors from primitive fetal

ductal cells [18]. Unexpectedly, we did not observe clustering by

endocrine cell type; rather, we observed clustering of postnatal and

adult beta cells with adult alpha cells, and close clustering of fetal

beta cells with neonatal alpha cells (Figure 1C). Pair-wise

differential expression analysis (Table S1) and unsupervised

hierarchical clustering analysis with over 30 adult mouse tissues

[19] supported this conclusion (Figure S2). As described below,

this similarity likely reflects common functions of mature adult

alpha cells and beta cells as nutrient-responsive cells that produce,

process and secrete peptide hormones—functions distinct from

those in fetal alpha and beta cells.

Identifying distinct gene sets in pancreas progenitor and
exocrine development

The clustering of cell types in our Pearson correlation analysis

(Figure 1C) indicated that specific cell types expressed distinct

genes. To investigate this further, we used module mapping [20],

which determines if a set of genes associated with or governing a

specific biological function is significantly enriched or depleted

Author Summary

Discovery of specific pancreas developmental regulators
has accelerated in recent years. In contrast, the global
regulatory programs controlling pancreas development
are poorly understood compared to other organs or
tissues like heart or blood. Decoding this regulatory logic
may accelerate development of replacement organs from
renewable sources like stem cells, but this goal requires
identification of regulators and assessment of their
functions on a global scale. To address this important
challenge for pancreas biology, we combined purification
of normal and mutant cells with genome-scale methods to
generate and analyze expression profiles from developing
pancreas cells. Our work revealed regulatory gene sets
governing development of pancreas progenitor cells and
their progeny. Our integrative approach nominated mul-
tiple pancreas developmental regulators, including sus-
pected risk genes for human diabetes, which we validated
by phenotyping mutant mice on a scale not previously
reported. Selection of these candidate regulators was
unbiased; thus it is remarkable that all were essential for
pancreatic islet development. Thus, our studies provide a
new heuristic resource for identifying genetic functions
underlying pancreas development and diseases like
diabetes mellitus.
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within a sample (see Methods). As expected, module mapping

revealed gene sets enriched in E11 pancreatic progenitors that

remained enriched in E15 pancreatic progenitors, fetal acinar

cells, and duct cells (Group I; Figure 2). This included gene sets

regulating cell proliferation, cell fate commitment, branching

morphogenesis and gland development; together, these functions

reflect the known proliferative capacity and differentiation

potential of these cell populations [21]. In addition, we observed

that progenitor and duct cells shared modules with fetal

endocrine cells (Group I; Figure 2), suggesting common genetic

regulatory features. These commonalities are consistent with

recent findings indicating a latent potential in pancreatic acinar

or duct cells for conversion into endocrine cells [22], [23]. To

identify gene sets enriched or uniquely expressed in E11 and E15

Sox9+ pancreatic progenitors, acinar or duct cells, we (1) obtained

the gene signatures for each cell type (Figure S3; Table S2; see

Methods for gene signature criteria), and (2) identified differen-

tially expressed genes (Figure S4; Tables S2, S3, S4). This analysis

revealed that E11, E15 progenitors and E15 acinar cells shared

distinct but overlapping gene signatures (Figure S3A). Genes in

these signatures included many transcriptional regulators,

including Bcl11a, and genes involved in RNA processing and

translation such as Spin2, Rpp40, and Rpl23, whose possible

roles have not been previously noted in pancreas development.

Thus, our analysis identified genes and gene sets that are

expressed during pancreatic progenitor and exocrine cell

development.

Identifying gene sets in endocrine progenitors and their
fetal and adult endocrine progeny

Maturation of defining beta cell functions, such as glucose

sensing and insulin secretion, increases from fetal through post-

natal stages [7] [24]; however, a comprehensive analysis of beta

cell gene expression from fetal to adult stages has not, to our

knowledge, been reported in mice. Likewise, little is known about

gene expression changes accompanying maturation of alpha cells

[25]. Module mapping revealed gene sets initially expressed in

Sox9+ pancreatic progenitor cells and Neurog3+ endocrine

progenitors (including the terms cell proliferation and cell fate

commitment) that were maintained in fetal beta and alpha cells

but extinguished in adult endocrine cells (Group I; Figure 2). A

second group of gene sets (with terms like cell adhesion,

angiogenesis, hormone activity and eye development) was

expressed after the Neurog3+ stage in alpha and beta cells.

Strikingly, nearly all these modules were transiently downregulated

in P15 beta cells and lost in adult alpha cells, but maintained in

adult beta cells (Group II; Figure 2). These findings are consistent

with prior studies showing that at early stages of development

(E15, E17, and P1) immature alpha and beta cells are establishing

neurovascular connections [26] [27], proliferating [28] [29], and

Figure 1. Acquisition and analysis of global gene-expression. (A) Schematic of experiments in this study. (B) Lineage-diagram of pancreas
development. The following cell types were collected: E11 and E15 pancreatic progenitors, E15 acinar cells, E15 endocrine progenitors (EP), E15, E17,
P1, P15, 8–12 week beta cells, P1 and 8–12 week alpha cells, and adult duct cells. The sort strategy is displayed in blue. Each sample was collected in
at least triplicate. MIP: Mouse Insulin Promoter, GcgVenus: Glucagon-Venus. (C) Pearson correlation plot and hierarchical clustering (right) of 12 cell
populations. The Pearson correlation coefficient was calculated on mean-centered normalized expression values of a subset of significant expressed
genes (see Methods for details). A positive correlation is portrayed in yellow and a negative correlation in purple.
doi:10.1371/journal.pgen.1004645.g001
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Figure 2. Module map analysis of differentially expressed gene sets. The module map algorithm of Genomica software was executed to
identify gene-sets (representing gene ontology biological functions) that are differentially expressed between 12 cell populations representing
various stages and cell types of the pancreas. Each individual block represents the average expression of statistically enriched (yellow) or depleted
(teal) genes based on a log2 scale (P,0.05 and FDR,0.05, Cut-off values .1 or ,21, based on a log2 scale). Black blocks indicate that there was no
significant enrichment or depletion of a gene-set. Because of resolution and space constraints not all gene set terms are displayed (signified with
dots). Endocrine progenitor (EP).
doi:10.1371/journal.pgen.1004645.g002
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developing components necessary for hormone synthesis, process-

ing or secretion [30]. A third group of modules (associated with

terms like voltage-gated ion channel activity, exocytosis, synapse,

and calcium ion homeostasis) was expressed initially at the

Neurog3+ stage then maintained throughout endocrine cell

development (Group III; Figure 2). Thus, consistent with the

clustering pattern of endocrine cells, we identified many gene sets

that were shared between alpha and beta cells.

Next, we sought to identify distinguishing gene sets and

signatures between alpha and beta cells. Module mapping revealed

that adult beta cells (compared to alpha cells) maintained dozens of

distinct gene sets (linked to terms like cell adhesion, calcium ion

binding, eye development and G-protein coupled receptor activity;

Groups II; Figure 2). These findings are consistent with established

roles of GPCRs and calcium transients in regulating adult beta-cell

proliferation, maturation and physiological regulation [31]. Our

analysis similarly revealed distinct gene signatures between

differentiated alpha and beta cells (Figure S3A, S3B; Table S2).

Differentially expressed genes enriched in postnatal beta cells

included Cldn8, C1qb, and Gdf3, while Fap, Ctxn2, and Mctp2
were highly expressed in adult alpha cells (Figure S4; Table S4).

Collectively, this work provides a useful resource for exploring

gene regulation and development of islet beta and alpha cells (see

below).

Iterative module network analysis (IMNA) identifies
regulators of pancreas development

After obtaining genes and gene sets that were differentially

expressed during pancreas development, we sought to identify the

regulatory logic governing their expression. Mutations in loci

encoding transcription factors constitute an important group of

risk factors for diabetes mellitus and pancreatic malformations in

humans [32] [33]. Thus, we focused on identifying regulatory

networks governed by transcription factors. To do this we

adapted the module network function in Genomica, a probabi-

listic algorithm that groups genes based on co-expression patterns

(modules) and predicts the regulators that might control such

gene co-expression (Figure 3A; [34] [35]). To identify regulators,

we first analyzed 1642 genes expressed in the developing

pancreas that encode transcription factors (TF) or DNA-binding

factors [36] [37] [38]. We optimized our parameters with a

‘training’ set of 82 established pancreatic regulators (Methods;

[9]). Because Genomica is constrained to choose one group of

regulators per gene set - a recognized limitation [39] - we

employed an Iterative Module Network Analysis (IMNA)

approach, in which we identified candidate regulators after

multiple iterations (‘runs’) of the module network program. We

then systematically varied the number of modules and runs

(Figure 3B; Figure S5; Methods), and found that 100 iterations of

75 modules identified 99% (81/82) of established transcriptional

regulators of pancreas development that included Neurog3, Arx,

Glis3, Pdx1, Isl1, Fev and Myt1 (Figure 3D; Table S5). The

quality of predictions did not improve with more iterations or

modules (Methods). To determine the validity of our outputs, we

ranked candidate regulators based on their frequency of

occurrence across all iterations (Figure 3D) and performed Gene

Set Enrichment Analysis on these ranked regulators (GSEA;

Figure 3C; [40]). This analysis revealed that established pancre-

atic regulators ranked significantly higher in the list indicating

that the top-ranked predictions were likely to be true regulators

(Figure 3C, 3D; Table S5). One highly-ranked candidate

regulator was Bcl11a, a gene previously linked by human GWAS

studies to increased type 2 diabetes (T2D) risk [41] [42] [43]. Of

26 loci encoding DNA-binding factors that have been linked to

diabetes risk, we found that 22 (85%, P = 1.3861028) were

expressed in the developing pancreas, and 21 of these were highly

ranked by IMNA as possible regulators (Figure 3E, 3F). This

provided unique evidence for roles of these diabetes risk genes in

regulating pancreas development and led us to establish analytic

methods to identify and prioritize transcriptional regulators for

further in vivo testing (see below).

Neurog3 encodes a bHLH transcription factor with essential

roles in the endocrine pancreas [44], and there is intensive

interest in identifying downstream targets and functions of

Neurog3 during pancreas development. Genomica module

network analysis identified sets of candidate Neurog3 target

genes and further predicted these to be activated (n = 327) or

repressed (n = 263) by Neurog3 (Figure 4A; Figure S6A; see

Methods). Genes predicted to be induced by Neurog3 included

known targets such as Pax4, Rfx6, Nkx2.2, Snail2 and Insm1, as

well as novel candidates like Etv1 and Runx1t1 (Figure 4A). We

did not detect known regulators of pancreas development among

the set of genes predicted to be repressed by Neurog3, an area not

previously well-characterized [9]; thus, we prioritized analysis of

the gene set predicted to be activated by Neurog3. Functional

enrichment analysis for biological processes through DAVID

(Figure 4E) predicted roles for these Neurog3 targets in processes

including RNA biosynthesis and transcription, protein transport,

localization and secretion, catabolic processes, cell cycle control

and chromatin organization. These functional categories were

corroborated independently by in vivo testing (see below). Thus,

the module network algorithm readily identified both established

and previously unrecognized Neurog3-dependent gene regulatory

programs and target genes governing pancreatic endocrine

development.

In vivo validation of genes regulated by Neurog3
To validate predictions from IMNA, we initially focused on

analyzing gene expression changes associated with the loss of

Neurog3 in vivo. We purified Neurog3-null cells from the

pancreata of E15 Neurog3eGFP/eGFP mutant embryos [45] [46],

an approach not previously reported [47] [48] [49]. Of the 6367

differentially expressed, 3188 were downregulated and 3179 were

upregulated by the loss of Neurog3 expression (Table S6). These

included both known targets such as Pax4, Rfx6, Nkx2.2, Snail2
and Insm1, as well as predicted novel targets such as Etv1 and

Runx1t1 (Figure 4A). Expression analysis of dissected mouse fetal

pancreas by quantitative PCR confirmed that Runx1t1 and Etv1
mRNA were significantly decreased upon the loss of Neurog3
(Figure 4B) and upregulated upon adenoviral misexpression of

Neurog3 in pancreatic epithelial cells (Figure 4C; detailed in

Methods). Moreover, immunostaining detected Runx1t1 protein

in a subset of pancreatic Neurog3+ cells at E15, which was lost in

Neurog3-null epithelium (Figure 4D).

Remarkably, 87% of genes predicted by IMNA to be activated

by Neurog3 (Figure 5A; P = 1.056102191) and 73% of targets

predicted to be repressed by Neurog3 (Figure S6A;

P = 7.026102102) were validated by our expression profiling of

Neurog3+ control and mutant Neurog3-null cells. Functional

enrichment analysis of Neurog3-activated targets identified by

expression profiling indicated roles in transcription, mRNA

processing, protein transport and secretion, cell morphogenesis,

catabolic processes and chromatin organization (Figure 4F). These

categories matched well with those predicted by our independent

module network analysis (Figure 4E). Similarly, functional enrich-

ment analysis of biological roles of predicted Neurog3-repressed

targets matched those identified by expression profiling (compare

Figure S6B, S6C). In summary, this in vivo mutant mouse analysis

Integrative Deconstruction of Pancreas Development
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substantially validated specific predictions made by IMNA about

Neurog3 target genes and their Neurog3-dependent biological

functions.

Functional validation of previously unrecognized
pancreas developmental regulators in vivo

To assess and validate candidate transcriptional regulators

nominated by IMNA, we chose to assess in vivo functions of genes

(1) highly ranked by IMNA (Table S5), (2) predicted to regulate

target genes or functions involved in pancreas development (Figure

S7), (3) without known roles in pancreas development at the

initiation of these studies, and (4) with available mutant mouse

alleles [50] [51] [52] [53]. These included Prdm16, Etv1,

Runx1t1, and Bcl11a (Table S5). During pancreas development,

mRNAs encoding each of these factors were more abundant in

Neurog3+ endocrine progenitors than in Sox9+ pancreatic

progenitors or beta cells (Figure 5A, 5B, 5D, 5G). This suggested

possible roles for each factor in islet development. We also

analyzed Gfi, a transcriptional regulator expressed in the fetal

pancreas (Figure S8E–G), which has an established role in

hematopoietic development [54] [55], but not nominated by

IMNA as a regulator of pancreas development.

Figure 3. Expression-based identification of pancreatic regulators. (A) Schematic of approach used to identify regulators of pancreas
development, their targets, and their predicted biological functions using the module network algorithm of Genomica. To identify regulators two lists
are loaded into the program: 1) a list of potential regulators and 2) normalized expression values of samples. Genes with similar expression patterns
are grouped (termed a module). Regulators that are most predictive of a specific module expression pattern are learned. Output information includes
a list of regulators and their potential targets. Functional enrichment analysis is used to predict the biological function of each regulator (see Methods
for details). An example of module-network analysis nominating Neurog3 as a candidate regulator of endocrine development is shown along with its
potential targets. (B) Optimal number of modules and iterations were determined by calculating the percentage of known regulators of pancreas
development for each module and iteration combination. (C) Gene set enrichment analysis (GSEA) for 100 iterations of 75 modules yielded an
enrichment score greater than .0.5 when known regulators were used. Distribution of known regulators based on their rank is displayed on the top
panel. (D) Ranking of candidate regulators based on their frequency. Among the most reproducible candidates included known pancreas regulators
such as Pdx1 and Neurog3 (red font) and candidate regulators validated in subsequent analysis (red font). (E) GSEA plot for the distribution of diabetes
risk factors among list of predicted regulators. (F) Ranking of diabetes risk factors based on their frequency score. Validated GWAS genes include
Bcl11a (red). (D and F) A frequency of 1.0 means that the candidate regulator appeared in 100% of the iterations performed.
doi:10.1371/journal.pgen.1004645.g003
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Figure 4. Identifying biological functions and targets of Neurog3. (A) Venn diagram displaying the number of predicted activated targets of
Neurog3 using the module network algorithm of Genomica based on a cut-off value of two-fold (orange), and the number of genes that are
downregulated upon the loss of Neurog3 by a two-fold difference based on expression profiling of E15 Neurog3-null cells (yellow). Overlap of a
subset of activated Neurog3 target genes is shown to the right. Validated targets are in red. Fisher’s exact test was used to calculate the P-value. (B)
mRNA expression of a subset of nominated regulators (Etv1, Prdm16, Runxt1t1, and Bcl11a) in Neurog3 mutant pancreata (n = 3) and control mice
(n = 3) at E15. (C) Adeno-based overexpression of Neurog3 in ductal cell line (mPAC) and its effect on Runx1t1, Bcl11a, Etv1, and Prdm16 expression.
(n = 3,each). (D) Immunohistochemistry showing the expression of Runx1t1 (red) in a subset of Neurog3-eGFP+ cells in heterozygous Neurog3eGFP/+

(left panel). Loss of Runx1t1 (red) in the epithelium of Neurog3-null pancreas (right panel). No change in expression of Runx1t1 (red) in mesenchymal
cells in Neurog3-null pancreas. Epithelial cells are labeled with E-cadherin (white). (E) Genomica-based predicted biological functions of Neurog3
based on the target genes that were positively correlated with the expression of Neurog3. (F) Biological functions of targets based on expression
profiling of Neurog3+ endocrine progenitor cells and E15 Neurog3-null cells based on a 2-fold difference. (B–C) data are represented as mean +/2
SEM. (D–E) functional enrichment analysis for each set of targets genes was performed through DAVID. FDR,0.05.
doi:10.1371/journal.pgen.1004645.g004
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Prdm16 encodes a transcriptional regulator and histone methyl-

transferase [56]. Our gene expression studies showed that Prdm16 is

highly expressed in Sox9+ pancreatic progenitor cells and Neurog3+

endocrine progenitors, then maintained at lower levels in alpha cells

and beta cells (Figure 5A). IMNA predicted that Prdm16 regulates

expression of Arx (Figure S7A). Supporting these findings, we recently

reported that homozygous null mutation of Prdm16 leads to impaired

development of pancreatic islets [17]. This included inappropriately

increased expression of Arx, increased alpha cell and PP cell numbers

(a known outcome of Arx misexpression; [57]), and disrupted beta cell

development [17]. Thus, our work supports the prediction that

Prdm16 is required for pancreas development in vivo.

Bcl11a encodes a zinc-finger transcription factor involved in

hematopoiesis [53] but without known roles in pancreas develop-

Figure 5. Gene-module network reveals candidate pancreas regulators. (A) Normalized expression values of Prdm16 in sorted cells. (B)
Normalized expression values of Bcl11a from purified cell populations. (C) Relative mRNA expression in Bcl11a mutant mice (n = 4) and control mice
(n = 4) in sorted cells enriched for endocrine cells at E15. (D) Normalized expression values for Etv1 from purified cell populations. (E) Relative mRNA
expression of pancreatic markers in Etv1 mutant (n = 4) and control (n = 4) pancreata at E18. (F) Cell mass changes in PP cells in Etv1 mutant mice at
birth (n = 3). (G) Normalized expression values for Runx1t1 from purified cell populations. (H) Relative gene expression in Runx1t1 mutant mice (n = 4)
and controls (n = 4) at E18 from whole pancreata. In (B–G), data are represented as mean +/2 SEM. In (C), (E), (H) expression levels were normalized to
beta-actin and results are shown relative to littermate controls, (A), (B), (D), (G) represent raw values obtained from microarray analysis.
doi:10.1371/journal.pgen.1004645.g005
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ment. IMNA nominated Bcl11a as a candidate regulator of

pancreas development, and predicted new target genes Ins2,

Glucagon and Ppy (Figure S7B). Remarkably, we observed

reduced mRNA expression of each of these genes in FACS-

purified endocrine cells from homozygous null mutant Bcl11a2/2

mice (Figure 5C). We did not find significant changes in allocation

of fetal islet cell subsets in Bcl11a mutants (Figure S8C), and

lethality at P1 precluded further phenotyping. Thus, in vivo

analysis confirmed a requirement for Bcl11a in endocrine

development.

Etv1 (also known as Er81) encodes a transcription factor

involved in neurogenesis and maturation of neural cells [50], but

has no known function in pancreas development. Etv1 mRNA

levels were reduced in Neurog3eGFP/eGFP null pancreata (Fig-

ure 4B), indicating that Etv1 is a direct or indirect target of

Neurog3 and might have roles in islet cell development. Consistent

with this possibility, we observed decreased levels of mRNAs

encoding islet cell hormones, including a significant reduction of

Pancreatic polypeptide mRNA in Etv12/2 mutant pancreas

(Figure 5E). Likewise, morphometry of P1 null Etv12/2 pancreas

revealed severely reduced islet PP cell mass (Figure 5F). Thus, in

vivo analysis confirmed a requirement for Etv1 in pancreatic islet

development.

Runx1t1 (also called Eto or Mtg8; [51]) encodes a transcription

factor related to the Drosophila runt protein, and mutations in this

gene have been linked to blood, lung and breast neoplasia [58]

[59]. We detected Runx1t1 and Neurog3 co-expression in fetal

pancreatic epithelial cells (Figure 4D). Runx1t1 mRNA was

reduced in homozygous Neurog3 mutant pancreas (Figure 4B),

and Runx1t1 protein was undetectable in homozygous null

Neurog3eGFP/eGFP mutant cells (Figure 4D), supporting the view

that Neurog3 regulates Runx1t1 expression. IMNA analysis

indicated Runx1t1 regulates Pancreatic polypeptide (Figure S7D).

Analysis of pancreas development in mice lacking Runx1t1, which

expire at birth, revealed increased mRNA levels of Pancreatic
polypeptide and Ghrelin expression (Figure 5H). Together with

findings of significant islet cell hyperplasia in Runx1t1 null

mutants (P. Pauerstein, C.B. and S.K.K., in preparation), our

analysis confirmed an essential role for Runx1t1 in pancreas

development.

Gfi1 encodes a transcriptional regulator [60] and is expressed in

fetal pancreas (Figure S8E) but was not nominated by IMNA as a

regulator of pancreas development. Consistent with this predic-

tion, we did not detect disrupted islet development or glucose

regulation in mice lacking Gfi1, despite exhaustive systematic

phenotyping (Figure S8F, S8G). Thus, our rigorous integration of

developmental, genomic and bioinformatic approaches identified

four candidate regulators of pancreas development, and mutant

mouse analysis confirmed that all four were also required in vivo.

Discussion

Elucidating the regulatory interactions underlying global

transcriptional programs that control development of solid organs

like the pancreas has been a challenge. Classical and recent studies

have advanced our understanding of the cellular origins, genetics,

morphogenesis, and cell lineage relationships in the developing

pancreas, and have identified features of transient pancreatic

progenitors or lineage-specific endocrine progenitors [8]. However

these and other fetal pancreatic cell subsets are generated in

relatively small numbers, hampering prior comprehensive geno-

mic-scale efforts to dissect pancreas development. Here we

combined several powerful approaches – including cell sorting,

transgenic cell labeling, genomic-scale expression profiling,

bioinformatics, and targeted mutagenesis in mice – to identify

elements comprising genetic regulatory hierarchies in the devel-

oping pancreas. This effort has revealed both the complexity and

structural framework of transcriptional programs underlying

pancreas cell differentiation and maturation, and provides a

strategy for similar studies in other solid organs.

Purification of cell subsets from defined genetic mouse strains by

flow cytometry ([16] [17], this study) generated highly-reproduc-

ible gene expression profiles of a dozen pancreatic cell subsets – a

degree of comprehensiveness unprecedented in prior studies. This

innovation permitted deconvolution of gene expression profiles

into co-expressed and co-regulated genes. We found that many

gene sets were re-used in multiple lineages and stages. These

findings are reminiscent of the general gene regulatory circuitry

identified during hematopoiesis [10]. For example, immature

alpha cell and beta cells from fetal or neonatal pancreas shared

common gene sets that clustered distinctly from those in mature

alpha and beta cells from adult pancreas. This feature likely

reflects commonalities of mature alpha and beta cells as nutrient-

responsive cells that produce, process and secrete polypeptide

hormones, and corroborate similarities of gene regulation

observed in adult human alpha and beta cells [61]. Global

similarities of gene expression in adult alpha and beta cells shown

here are also consistent with recent findings that in specific

experimental settings, adult alpha cells may acquire beta cell

features [62] [63] or vice-versa [64]. Identification of gene sets

controlling function of mature beta cells may foster progress in

producing replacement beta cells from renewable stem cell sources

for diabetic patients [65]. For example, gene sets regulating

calcium ion transport or responsiveness were enriched in adult

beta cells, consistent with studies showing that calcium-dependent

signaling pathways regulate beta cell maturation in mice and

humans [31] [66]. Stimulation of calcium-responsive pathways,

such as calcineurin/NFATc signaling, can enhance functional

maturation of beta cells [31]. Thus, our reference data sets should

prove useful for advancing efforts to produce or replace beta cells

in diabetes.

Compared to the endocrine cell lineage or exocrine acinar cells,

little is known about the genetic programs defining pancreatic

exocrine duct cells [21]. Pearson correlation identified clustering

between adult ductal cells and fetal pancreatic cells, including

endocrine progenitor cells. This indicated that regulatory

programs maintaining adult ductal cell gene expression and fate

are unexpectedly similar to those in transient oligopotent fetal cell

subsets, as suggested by unsupervised clustering with 30 mouse

tissues. Thus, our study provides support for strategies focused on

‘reprogramming’ duct cells into other desired fates, including

insulin-producing cells [67] [23] and could accelerate use of

somatic cell reprogramming for therapeutic aims.

Human genetic studies have revealed that transcription factors

have major roles in the pathogenesis of pancreatic malformation,

including agenesis and diabetes mellitus [32] [68]; thus, we

focused here on elucidating previously unrecognized transcrip-

tional regulators required for pancreas development. Our general

strategy was to exploit co-variance of transcription factors in gene

sets and the cellular states they might regulate. Iterative use of a

gene expression-based probabilistic program identified known

regulators with high efficiency and predicted new regulatory

functions for scores of transcription factors. IMNA identified

known and novel regulators of endocrine development (see below),

including a subset of transcription factors previously implicated by

human GWAS in type 2 diabetes risk [41,43]. We also noted that

the frequency of detecting regulators of exocrine differentiation,

like Mist1, was lower (Table S5). This likely reflects the lower
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representation of gene sets from differentiated exocrine cell types

(2/12 cell subsets purified and analyzed here) compared to

endocrine cell subsets. Therefore, further studies of gene

regulation in subsets of purified fetal pancreatic exocrine cells

could therefore likely identify additional exocrine pancreatic

regulators.

To validate and assess the biological significance of predictions

based on gene expression and module analysis and to control for

variables introduced by our FACS-based approach, we analyzed

relevant mutant mouse strains, including Neurog3 mutants. This

combined approach proved to be a powerful way to test, for

example, predictions of Neurog3 target gene expression, and to

functionally validate transcriptional regulators identified by

IMNA. Bcl11a, Runx1t1, Prdm16 and Etv1 encode transcription

factors not previously linked to roles in pancreas development

when these studies began. Prior studies had revealed crucial roles

for Bcl11a in regulating blood development [69] [53] and diseases

[70] [71], and for Runx1t1 in midgut development [51] and

neoplasias of blood, lung and breast [58] [59]. Prdm16 has well

characterized functions in adipogenesis [72] [73], leukemia

pathogenesis [74], and neuronal stem cells maintenance [75].

Etv1/Er81 is an established regulator of fetal neuronal develop-

ment [50] whose mis-expression leads to cancer pathogenesis in

diverse tissues [76]. Independent genetic screens in our group,

concurrent with studies here, identified roles for Prdm16 in

regulating allocation of pancreatic islet cells in development [17].

Strikingly, after unbiased selection of these four candidate

regulators, analysis of mouse strains harboring targeted mutations

in Etv1, Prdm16, Bcl11a and Runx1t1 here or in recent studies

from our group [17] revealed defects of pancreas development in

all of the mutants. Though expressed in islet development, Gfi1,

an established regulator of myeloid and enteric development [54]

[77] [78], did not meet criteria of a regulator through our

bioinformatic analysis. Accordingly, intensive investigation re-

vealed no detectable phenotypes in pancreas development or

glucose control in mice lacking Gfi1. Thus, our integrated

approach accurately predicted essential regulators of islet devel-

opment, demonstrating the robustness of our cell purification and

gene expression profiling. This level of functional validation with

mutant mouse phenotyping is, to our knowledge, unprecedented

for integrative genomic approaches to pancreas development.

Clearly, additional in-depth phenotypic studies, including in mice

permitting conditional or pancreas-specific gene targeting, could

prove valuable for understanding the molecular roles of these

factors in pancreas development. Improved methods to isolate,

purify and analyze cognate human pancreatic cell subsets [79]

should enable an analogous integrative approach to identify

factors regulating human pancreatic development.

Endoderm-derived epithelial cells and their progeny accomplish

the vital physiological functions of the adult pancreas, and in other

gastrointestinal organs. Thus, in these initial investigations we

focused on deciphering the transcriptional hierarchies underlying

epithelial cell development in the pancreas. However, prior studies

have revealed that non-epithelial cells, including vascular endo-

thelium, neuronal cells, and mesenchyme-derived signals control

basic aspects of pancreas development [7] [80]. Thus, a complete

deconstruction of pancreas development will require assessments,

akin to those described here, of gene expression data from

additional important cell subsets. Likewise additional data from

epigenetic, genome-scale ChIP-Seq, proteomics and enhancer

analyses [81] need to be integrated into the regulatory frameworks

described here. The coordinated developmental, cellular, molec-

ular and computational approaches described here should provide

a paradigm for identifying genes and circuitry underlying

development and postnatal maturation in other visceral organs,

as well as assessment of regenerated pancreatic cell types.

Methods

Animals
All animal studies were approved by Stanford University and

performed in accordance with Stanford University Animal Care

and Use guidelines. Discomfort of animals was limited to that

which was unavoidable in the conduct of scientifically valuable

research. Analgesic, anesthetic, and tranquilizing drugs used

where indicated and where appropriate to minimize discomfort

and pain.

Mice harboring the Sox9-eGFP BAC transgene were obtained

from Mutant Mouse Regional Resource Center, University of

California at Davis [82]. Because of eGFP perdurance, Sox9-

eGFP+ cells in Sox9-eGFP mice contain a mixture of Sox9+ and

Sox9neg progeny. However, the percent of Sox9neg cells is low [17].

Neurog3eGFP transgenic mice were a kind gift from Drs. Guoqiang

Gu and Douglas Melton [13]. Neurog3 knock-in reporter mice

were a kind gift from Dr. Klaus Kaestner [45] [46] and provided

by Dr. O. Cleaver. Mouse Insulin Promoter (MIP)-GFP mice were

a gift from Dr. M. Hara (University of Chicago, Chicago, IL; [83])

and maintained in a CD-1 background. Glucagon-Venus mice

were a gift from Dr. Fiona Gribble [84]. Runx1t1 mutant mice

were rederived from MRC Harwell (Stock number FESA:000373).

Etv1 mutant mice were a gift from Dr. Thomas Jessell and

provided by Dr. Julia Kaltschmidt (Memorial Sloan Kettering

Institute). Bcl11a mutant mice were derived from Bcl11a floxed

mice [53] by crossing with a Cre deleter strain (CMV-Cre),

obtained from Jackson Laboratories (Stock number 006054).

Prdm16 mutant mice were obtained from Jackson Laboratories

(Stock number 013100). Gfi1 mutant mice are described in [54].

Genotyping follows published methods. Mice were mated

overnight and checked for plugs. Noon on the day of vaginal

plug appearance was counted as embryonic day 0.5 (E0.5).

Cell sorting strategy and flow cytometry
Pancreata were obtained at E11, E15, E17, postnatal day (P) 1,

P15, and 8–12 weeks of age. To obtain E11 Sox9+ pancreatic

progenitors, we dissected the dorsal pancreas from Sox9-eGFP

reporter embryos and dissociated with TrypLE Express (Invitro-

gen, Carlsbad, CA) at 37uC for 5 min and triturated. TrypLE was

neutralized with 10% (v/v) FBS in PBS [17]. Approximately 200

pancreata were dissected to obtain four replicates of Sox9+

pancreatic progenitors. E15 pancreatic progenitors, Neurog3+

endocrine progenitors, and acinar cells were collected using a

combination of cell surface markers and transgenic cell labeling.

This approach was used to collect hormoneneg Neurog3+

endocrine progenitors because GFP perdurance labels their

hormone+ descendants. Briefly, the Neurog3eGFP transgenic

pancreata were dissected and visually assessed for GFP expression.

GFP+ pancreata were pooled and dissociated with 0.05% Trypsin

EDTA at 37uC for 8 min and triturated (GFPneg pancreata were

collected for FACS gating purposes). Trypsin EDTA was

neutralized with 10%(v/v) FBS in 10 mM EGTA, PBS [16] and

the cells were treated for 15 min in a blocking solution composed

of FACS buffer (2% fetal bovine serum in PBS, 10 mM EGTA

was supplemented for experiments of E15 pancreas) containing

300 ng/ml rat IgG (Jackson ImmunoResearch, West Grove, PA).

We used the following primary antibodies: biotin anti-CD133

(13A4, 1:100; eBioscience, San Diego, CA), Pacific Blue anti-

CD24 (M1/69, 1:100; BioLegend, San Diego, CA), and PE anti-

CD49f (GoH3, 1:50; R&D, Minneapolis, MN). Streptavidin-APC
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(1:200; eBioscience) was used to visualize biotinylated antibodies.

Gating was performed in accordance to Sugiyama [16]. The

antibody combinations are shown in Figure 1B. E15 Neurog3-null

cells were collected similarly from GFP+ Neurog3eGFP/eGFP knock-

in embryos. A total of 405 pancreata were dissected to collect each

replicate of Neurog3+ endocrine progenitors. Each replicate

comprises ,15,000 cells.

Beta cells and alpha cells were obtained from MIP-GFP and

Glucagon-Venus reporter mice, respectively. Beta cells were

collected from E15, E17, postnatal day (P) 1, P15, and 8–12

week-old male mice, while alpha cells were collected at P1 and 8–

12 week-old male mice. E15 and E17 MIP-GFP+ pancreata were

dissociated with 0.05% Trypsin EDTA for 8–10 min at 37uC and

triturated from 300 pancreata and 240 pancreata, respectively. P1

MIP-GFP+ and P1 Glucagon-Venus+ pancreas were dissociated

with 1 mg/ml collagenase (Sigma-Aldrich; C01030) for 8 minutes,

followed by mixing, spinning and further dissociation with 1 mg/

ml dispase for 8 minutes at 37uC from approximately 230

pancreata. P15 and adult pancreata were dissociated by standard

intraductal ligation and digestion with 1 mg/ml collagenase [31].

Each replicate consisted of at least 3 male mice. Beta cells from the

stages E15, E17 and P1 are termed ‘fetal’ beta cells, while beta

cells from P15 and adult mice are ‘postnatal’ beta cells based on

their ability to couple glucose detection with insulin secretion [85].

Adult duct cells were collected using APC anti-CD133 (1:100;

BioLegend, San Diego, CA). To exclude blood cell contamination

from our sorts we used cell-surface markers Ter119 and CD45

(1:100; Biosciences), which label erythroid cells and leukocytes,

respectively. Live-dead cell exclusion was performed with 10 mg/

mL Propidium Iodide (PI; Sigma) or 10 mg/mL Aqua (L34957;

Invitrogen).

Cell sorting was performed in FACS Aria I and II machines

fitted with a 100 uM nozzle using DIVA software (BD Biosciences,

San Jose, CA). FACS data were analyzed by using FlowJo software

(Tree Star, San Carlos, CA). Cells were collected in 10% fetal

bovine serum in PBS and processed for RNA collection (for acinar

cells, 2% fetal bovine serum in PBS supplemented with 10 mM

EGTA). Cell death did not exceed 30% per sample. All cell types

were collected in at least triplicate from a minimum of 15,000 cells

per sample.

Molecular biology
Total mRNA was isolated using the Arcturus PicoPure kit

(Applied Biosystems) for all microarray samples. For quantitative

PCR analysis, whole pancreas mRNA at E18 or P1 was collected

by homogenizing each pancreas in 1.5 ml of RLT buffer and

RNA was extracted using the Qiagen RNAeasy Micro kit

(Qiagen). cDNA synthesis was performed with Ambion Retro-

script kit. Quantitative PCR studies were performed using an

ABI7500 system, Applied Biosystems (Foster City, CA). Replicates

were processed independently, and each cDNA was tested in

duplicate. Expression level was normalized to beta-actin. Infor-

mation about primer and probe sets is available upon request.

Microarray data preprocessing, normalization and
clustering

RNA quality was accessed with Agilent’s BioAnalyzer (Stanford

PAN facility). 50 ng to 100 ng of mRNA with a RNA integrity

number (RIN) score .9 were amplified with NuGen Ovation Kit

V2 (NuGEN) and fragmented and labeled with the Biotin and

fragmentation labeling kit (NuGEN) following manufacturer’s

protocol. Hybridization and image analysis processing was done in

accordance to the Stanford PAN facility. The Affymetrix Mouse

430 2.0 GeneChip was used.

For gene expression analysis, arrays were RMA normalized using

justRMA package in R. After normalization, probes with raw

expression value of 100 in all arrays were filtered out—leaving a

total of 23,093 probes. For each expressed probe, expression values

were log2-transformed, and mean-centered across all the conditions

before pair-wise Pearson correlation was performed. Unsupervised

hierarchical clustering and array clustering of pair-wise Pearson

correlation was performed using Cluster 3.0 [86]. This dendrogram

was overlaid with the Pearson correlation plot (Figure 1C).

Unsupervised hierarchical clustering analysis with Microarray

data from over 30 adult mouse tissues was downloaded from NIH

GEO, with accession number GSE1133 [19]. The data discussed

in this publication have been deposited in NCBI’s Gene

Expression Omnibus [87] and are accessible through GEO Series

accession number GSE54374 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE54374).

Module mapping
The module mapping function of Genomica [34] was executed to

identify gene sets that are enriched or depleted in each sample. Here,

we entered gene ontology terms belonging to biological processes (BP-

GO terms) from mouse and the mean-centered normalized

expression values for all the arrays (23,093 probes). We used the

default settings of the program: P-value of 0.05, FDR correction of

0.05, and the hierarchical agglomerative (correction centered)

clustering method. Probes with an expression level . = 1 (on a log2

scale) were considered upregulated, while probes with an expression

level , = 21 (on a log2 scale) were considered downregulated. We

displayed the average expression of gene hits from each enriched gene

set (based on a log2 scale of mean-centered values). GO gene sets of

biological functions were downloaded from website DAVID and

imported into the Genomica Software [20] [34].

Gene signatures and pair-wise comparisons
Gene signatures for each cell type were calculated using Student

t-test comparing signals in the arrays of a particular cell-type

versus the rest of the arrays. The genes selected as ‘signature genes’

met four parameters: P-value, = 0.001, FDR, = 0.05, log2 fold

change . = 1, and standard deviation , = 0.5 of arrays in the

same cell type. FDR correction was estimated using the p.adjust

package in R. Negative gene signatures were selected using a log2

fold change , = 21, P-value, = 0.001, FDR, = 0.05, and

standard deviation , = 0.5 of arrays in the same cell type. Similar

methods were applied for transcription factor signatures. For each

gene signature, we performed functional enrichment analysis of

Gene Ontology terms related to biological processes (GO-

TERM_BP_FAT) through DAVID. BP-GO terms were consid-

ered significant if FDR.0.05. DAVID default settings were used.

To obtain differentially expressed genes between two cell types

we used the Student t-test where the obtained P-values were

adjusted for multiple testing using the p.adjust function of R with

Benjamini-Hochberg method (adjusted P,0.05). The log2 fold

change difference between each representative cell type was

calculated by averaging the transformed probe signals in the arrays

of the first cell type and subtract that from the second cell type.

Fetal endocrine cells included E15 beta cells, E17 beta cells, P1

beta cells, and P1 alpha cells. Postnatal endocrine cells include P15

beta cells, Adult beta cells, and Adult alpha cells.

IMNA expression-based prediction of regulators, their
target genes and functions

We identified candidate regulators and their regulation

programs using the Module Networks algorithm in the Genomica
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software [10] [34]. Genomica detects modules of co-expressed

genes (gene sets) and their shared regulatory programs. A

regulation program is a small set of genes whose expression is

predictive of the expression level of the module genes using a

decision (regression) tree structure. Given the expression values of

a pool of candidate regulator genes, a set of modules and their

associated regulation programs are automatically inferred by an

iterative procedure. This procedure searches for the best gene

partition into modules and for the regulation program of each

module while optimizing a target function. The target function is

the Bayesian score derived from the posterior probability of the

model (see [34] for a detailed description of the algorithm). The

program requires two input lists: 1) list of potential regulators as

determined by the user and 2) normalized mean-centered

expression data for the samples of interest. We compiled a list of

1642 mouse transcription factors (TF) or TF components from

various sources [36,37] [38]. Our list of input ‘regulators’ was a

filtered list of TFs and TF components that were expressed in our

arrays (total of 3310 expressed probes based on our list of 1642

candidate TFs). Our list of input ‘expression values’ consisted of

the normalized and mean-centered values for all 12 cell

populations (described above; 23,093 probes). We applied the

default settings and set the maximum tree depth to 5.

We optimized the maximum number of modules by counting the

number of known regulators predicted. The list of known pancreatic

regulators (82 total) was compiled from [9] and literature searches

on all predicted regulators in pubmed. Genomica identifies the sets

of candidate regulators that are most predictive of the expression

pattern for each module (co-expressed genes). We tested the quality

of its predictions by setting: 25, 50, 75, and 100 modules. After a

single run, 100 modules identified 25% of known regulators of

pancreas development. Because this number was low and because

single runs were inherently unstable, we reasoned that multiple

iterations may yield better predictions. We tested the optimal

number of iterations counting the number of known regulators after

1, 20, 40, 60, 80, and 100 iterations for each module number.

Reproducibility was determined by ranking the frequency that each

candidate regulator is identified after each run and by performing

Gene set enrichment analysis (GSEA; [40]; Figure S5) of true

positives (known regulators). We determined that 100 iterations of

75 modules was the best setting; it identified 99% of known

pancreatic regulators and provided the best GSEA enrichment

score. Increasing the number of iterations to 110 or 120 predicted

the same number of known pancreatic regulators but worsened the

enrichment score. To obtain the GSEA enrichment score of

diabetes risk factor genes, we compiled a total of 72 risk factor genes

from [42] and [88]. Then we performed GSEA on factors that were

transcription factors or DNA-binding proteins (26/72 genes) and

were expressed in the pancreas (22/26 TFs genes). Using our list of

22 risk factor genes we obtained the enrichment score relative to the

ranked list from our IMNA approach as described above.

The predicted targets and functions for a subset of candidate

regulators were determined by extracting the modules that each

regulator was predicted to regulate. All the modules that were

positively regulated were grouped (comprising of a minimum of 5

modules per regulator). This was similarly done for modules that a

regulator was predicted to repress. We obtained the predicted

biological functions for each regulator by performing functional

enrichment analysis on each list of genes through DAVID. BP-GO

terms were considered significant if FDR.0.2. DAVID default

settings were used.

To validate the predicted targets and functions of Neurog3, we

performed Student’s t-test to obtain differentially expressed genes

between E15 Neurog3+ endocrine progenitors and E15 Neuorg3-

null cells. We obtained ,8000 probes that were differentially

expressed with a 2-fold difference (4604 probes enriched in E15

endocrine progenitors and 4217 probes enriched in Neurog3-null

cells). We compared this list to targets predicted by Genomica.

This analysis yielded an 85% overlap in probes (303/358;

P = 2.016102168; Figure 4A) or 87.2% overlap in genes (285/

327; P = 1.056102191) when we filter out probes in each predicted

module that have an expression value = ,1 (based on a log2 scale).

The same approach was used to predict repressed targets of

Neurog3. When we filter probes with an expression value .21,

67% of probes overlap (220/328, P-value = 2.60610285; Figure

S6A) or 73% genes overlap (192/263; P = 7.026102102). Fisher’s

exact test was used to determine statistical significance with P,

0.05 against the total number of probes or genes. Next, we

performed functional enrichment analysis on each list of

Genomica predicted targets through DAVID using default settings

and compared these results to targets obtained by gene expression

profiling of Neurog3-null cells (FDR,0.05).

The analysis was integrated through GenomeSpace (http://

www.genomespace.org/). Venn diagrams were obtained with the

Venny program [89] (http://bioinfogp.cnb.csic.es/tools/venny/

index.html). Fisher’s exact analysis was performed using the

following website: http://www.langsrud.com/fisher.htm

Statistical analyses
Each variable was analyzed using the two-tailed Student’s t test.

For all analyses, a P value of less than 0.05 was considered

significant. Results are given as mean +/2 SEM.

Over-expression of Neurog3
A mouse duct cell line (mPAC) was infected with adenoviruses

expressing the mouse Neurog3 gene and the red fluorescent

protein (RFP) from separate CMV promoters. The control sample

included mPAC cells that were infected with Adenoviruses

expressing RFP. We verified that RFP did not have an effect on

the expression of Neurog3 downstream genes in non-treated

mPAC cells. Cells were cultured with the virus for 1 day and then

media was changed. Cells were harvested after 3–4 days. Each

experimental condition was performed in triplicate.

Immunohistology
For measurement of endocrine-cell mass, a minimum of 12

pancreas sections spanning the entire pancreas were assessed for at

least 3 different mice per genotype. The total cross-sectional area of

hormone+ cells was summed and normalized to total pancreatic area

using Image-Pro Plus analysis software (Media Cybernetics). Statis-

tical analysis was performed using a two-tailed Student’s t-test. For

staining Runx1t1 and Etv1-LacZ expression, E15 and 2-month old

mouse pancreata were dissected and fixed with 4% paraformalde-

hyde overnight at 4uC, and cryo-embedded. Sections were

permeabilized with 1% Triton-X-100 for 1 hr before blocking with

2%BSA, 1% DMSO in PBS. We used the following primary

antibodies: Goat anti-Runx1t1 (1:200, Santa Cruz, C-20), Rabbit

anti-LacZ (1:500, Invitrogen), and Rat anti-E-cadherin (1:400,

Invitrogen). Secondary antibodies were from Jackson ImmunoR-

esearch and Molecular Probes. Samples were mounted with

Vectashield containing DAPI (Vector Laboratories). Microscopic

images were obtained using a Leica SP2 AOBS confocal laser-

scanning microscope.

Supporting Information

Figure S1 Heat map of mRNA expression of a subset of known

pancreatic markers. (A) Heat map of genes that are representative
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of each major cell type collected. High relative expression is shown

in red and low relative expression in blue based on a log2 scale. (B)

Insulin and Glucagon mRNA-expression analysis of sorted beta

cells from adult mice. (C) Insulin and Glucagon mRNA-expression

of sorted alpha cells from adult mice.

(PDF)

Figure S2 Hierarchical clustering of pancreatic cells with 30

adult mouse tissues. The data was normalized and clustered. The

cells in this study are in red and those from [19] are in black.

(PDF)

Figure S3 Gene signatures across 12 sorted cell types. (A) Genes

that are enriched in each cell type were termed ‘positive gene-

signatures’ based on four parameters (P-value, = 0.001, FDR,

= 0.05, log2 fold change . = 1, and standard deviation , = 0.5 of

arrays in the same cell type). Range of expression values (25.015,

4.84). More than 75% of probes with positive values lie within the

range of +2.1 to 22.1 based on a log2 scale. (B) Genes that are

repressed in each cell type were termed ‘negative gene-signatures’

based on parameters (P-value, = 0.001, FDR, = 0.05, log2 fold

change . = 21, and standard deviation , = 0.5 of arrays in the

same cell type). Range of values (26.55, 3.98)..75% of probes

with negative values lie within the range of 22.1 to +2.1 based on

a log2 scale. (A–B) E15, E17, and P1 beta cell samples were

grouped to obtain the gene signature of fetal beta cells and P15

and 8–12 week beta cells were grouped to obtain the gene

signature of postnatal beta cells. SPP (Sox9+ Pancreatic Progen-

itor), EP (Endocrine Progenitor). Scale bar based on a log2 scale.

The number of genes corresponding to each gene signature are

shown below each heatmap. Corresponding values for each figure

are shown in Table S2.

(PDF)

Figure S4 Pair-wise comparisons between endocrine cells.

Volcano plots representing the distribution of probes against their

P-value and FDR cut off of ,0.05 (horizontal red line). Horizontal

red lines represent an expression cut off with a log2 value of 21

and +1. X-axis represents the log2 fold change between each pair

of conditions, while the Y-axis represents the 2log10 value of the

P-value. The annotated probes with the highest fold change

difference are noted in each graph. A full list of differentially

expressed genes for each condition is shown in Table S4. Color

scheme of cell types as shown in Figure 1B, i.e. blue (beta cells),

green (alpha cells).

(PDF)

Figure S5 GSEA of various module and iterations parameters

used in IMNA. Gene set enrichment analysis displaying the

enrichment score and distribution of known regulators of pancreas

development based on their frequency. We show 25 modules at

100 iterations, 50 modules at 100 iterations, 75 modules at 120

iterations, and 100 modules at 100 iterations. The enrichment

score for these parameters was worse than the enrichment score

for 75 modules at 100 iterations. All statistical tests had a P-value

and FDR value of ,0.05.

(PDF)

Figure S6 Validation of repressed Neurog3 functions and

targets. (A) Venn diagram showing genes that were upregulated

in E15 Neurog3-null cells (yellow) and predicted repressed targets

of Neurog3 based on module network analysis in Genomica

(orange). Fisher’s exact test was used to calculate the P-value. (B).

Functional enrichment analysis of biological functions of predicted

repressed targets of Neurog3 based on the module network

analysis algorithm. (C) Functional gene set analysis of genes that

were enriched in Neurog3-null cells vs. E15 Neurog3+ endocrine

progenitors (by 2-fold) was performed using DAVID (FDR,0.05),

similar biological terms were grouped.

(PDF)

Figure S7 Predicted targets and GO terms of a subset of

regulators. (A–D) Predicted biological functions of Bcl11a,

Runx1t1, Etv1, and Prdm16 as determined by DAVID analysis

of Genomica predicted targets for positively-correlated genes.

FDR,0.2. X-axis shows the 2log (p-value) of each biological

function as calculated in DAVID. A sample of the predicted

targets is shown to the right. Validated targets are shown in red.

(PDF)

Figure S8 Phenotypic mutant analysis of nominated regulators.

(A) Expression of Etv1 expression in adult mouse pancreas using

the Etv1LacZ knock-in reporter mouse with Glucagon staining

(red). (B) Immunostaining showing that Runx1t1 (green) is

expressed in a subset of islets sells as determined by overlap with

islet marker Chromogranin A (ChgA, green), epithelial cells are

shown in white in E15 fetal pancreas. (C) Morphometric analysis

comparing the insulin+ cell area and glucagon+ cell area in Bcl11a
mutant mice compared to littermate controls (n = 3 each) at birth

(P1). (D) Morphometric analysis of pancreatic polypeptide+ (PP),

insulin+ (Ins), and glucagon+ (Gcg), and somatostatin+ (Sst) cell

area in Etv1 mutant mice on embryonic day 18 (n = 5, each). In

(C) and (D) there were no statistically significant changes in each

comparison. (E) mRNA expression of Gfi1 from E15 pancreatic

progenitors, E15 endocrine progenitors, E15 endocrine cells, E15

acinar cells, and E15 Neurog3-null cells. (F) Fasting glucose

tolerance between 8–12 week old Gfi1 mutant mice and control

littermates (n = 3, each). (G) mRNA expression analysis comparing

a set of pancreatic markers between Gfi1 mutant whole pancreas

and control mice at P1 (n = 2, mean +/2 SEM).

(PDF)

Table S1 Pair-wise comparison of alpha and beta cells by

developmental stage. Fetal beta cells represent E15, E17, P1 beta

cells while postnatal beta cells represent P15 and 8–12 week beta

cells. Percentage of affymetrix probes that are differentially

expressed based on a total probe number of 45101.

(XLS)

Table S2 Gene signatures of pancreatic cells types. Tab1:

Positive signature. Tab2: Negative signature. Fetal beta cells (E15,

E17 and P1 beta cells). Postnatal beta cells (P15 and 8–12 week

beta cells). Parameters used to obtain gene signatures are described

in methods. Corresponding Figure S3A–B.

(XLS)

Table S3 Pair-wise comparisons of cells of progenitors. Tab1:

E11 SPP vs. E15 SPP. Tab 2: E11 SPP vs. E15 acinar cells. Tab 3:

E11 SPP vs. adult duct cells. Tab 4: E11 SPP vs. E15 EP. Tab 5:

E15 SPP vs. adult duct cells. Expression values represent Log2

normalized values. Only values that are differentially expressed by

a 2-fold change and have an adjusted P-value of ,0.05 (based on a

multiple hypothesis correction) are shown. SPP (Sox9+ pancreatic

progenitor), EP (endocrine progenitor).

(XLS)

Table S4 Pair-wise comparisons of cells of endocrine cells.

Tab1: Postnatal (P15 and adult beta cells) vs. fetal (E15, E17, P1)

beta cells. Tab 2: Fetal beta vs. P1 alpha cells. Tab 3: P1 alpha vs

adult alpha cells. Tab 4: Postnatal beta cells vs. adult alpha cells.

Tab 5: Fetal (E15, E17, and P1 beta cells and P1 alpha cells) vs.

postnatal endocrine cells (P15 and adult beta cells and adult alpha

cells). Tab 5: E15 EP vs E15 beta cells. Expression values represent

Log2 normalized values. Only values that are differentially
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expressed by a 2-fold change and have an adjusted P-value of ,

0.05 (based on a multiple hypothesis correction) are shown.

Corresponding volcano plots are displayed in Figure S4. EP

(endocrine progenitor).

(XLS)

Table S5 Predicted regulators of pancreas development by

IMNA. The frequency ratio was calculated based on the number

of times each regulator appears after each iterative run. A total of

100 iterative runs were performed each comprising of 75 gene-

network modules. Analysis was executed using the module

network algorithm of Genomica.

(XLS)

Table S6 Pair-wise comparison of Neurog3-wt vs. Neurog3 null

cells. Differentially expressed genes were obtained by comparing

the expression values of E15 Neurog3+ endocrine progenitor (E15

EP) cells to sorted E15 Neurog3-null cells. Expression values

represent Log2 normalized values. Only values that are differen-

tially expressed by a 2-fold change and have an adjusted P-value of

,0.05 (based on a multiple hypothesis correction) are shown.

(XLS)
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