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a b s t r a c t

Pre-mRNA alternative splicing (AS) allows individual genes to produce multiple types of mRNA and

associated protein isoforms. While AS regulation enables the production of the hundreds of thousands

of types of proteins needed for the normal functioning of the human cell, it also presents many

opportunities for the onset of cancer and other diseases. The AS process is known to be regulated by a

group of serine/arginine rich (SR) proteins, heterogeneous nuclear ribonucleoproteins (hnRNPs), and

small nuclear ribonucleoprotein (snRNP) particles through a complex assembly. Each gene-exon is

regulated by one or multiple splicing regulators, from which one may hypothesize the existence of an

alternative splicing regulatory network (SRN). The SRN contains a list of gene-exons, for each of which

the factors that up/down regulate them are provided. Since defects in the SRN play key roles in human

disease, a reconstruction of human SRN could be used to facilitate the design of diagnostic and

therapeutic strategies. In this paper, we present a methodology to automate genome-wide SRN

reconstruction. We construct SRN based on an extensive correlation analysis of human exon expression

microarray data, conventional gene expression microarray profiles, and an experimentally verified AS

and transcriptional regulatory interaction training set. This SRN reconstruction methodology is

demonstrated and software (AutoNet) that automates the reconstruction of SRN is developed. A

genome-wide SRN was constructed for normal human cells and an assessment of the reliability of each

predicted interaction is provided. Human SRN we constructed are free available from our web portal:

https://ruby.chem.indiana.edu/�scorenfl/srn_results/lookup0.php

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The expression of genetic information of mammalian cells
consists of three steps: (1) transcription of genetic codes from
DNA to pre-mRNA; (2) pre-mRNA splicing to create one or more
alternative mRNAs; and (3) mRNA translation. Pre-mRNA tran-
scription is regulated by a special group of proteins known as
transcription factors (TFs). TFs bind to a gene’s promoter region to
enhance/repress its expression. If the binding of a TF facilitates
the binding of RNA polymerases and therefore enhances pre-
mRNA expression, the TF is considered to up-regulate the
transcription of this gene, and conversely for down-regulation.
Since every gene is regulated by one or more TFs and every TF is
encoded from one or more genes, there exists a transcriptional
regulatory network (TRN) which contains (1) a list of genes for
each of which the TFs up/down regulate it; and (2) a list of TFs for
each of which genes that encode it or its component. The
discovery of TRNs greatly advances our understanding of
mechanisms of cellular processes and responses, and is of
great importance in biotechnical applications, particularly in
ll rights reserved.

: +1 812 855 8300.

k@indiana.edu (A.M. Yesnik),
delineating regulatory abnormalities in cancers and other dis-
eases from a genome-wide perspective. Recently, numerous TRN
reconstruction approaches have been presented via inference
from experimentally verified training sets (Cartegni and Krainer,
2002; Qu et al., 2007; Sayyed-Ahmad et al., 2007), gene
expression microarray analysis (Chang et al., 2008; Chen et al.,
2006; Gardner et al., 2003; Gutierrez-Rios et al., 2003; Huang
et al., 2007; Li et al., 2004; Sano et al., 2006; Sayyed-Ahmad et al.,
2007; Zhou et al., 2005; Zou and Conzen, 2005), gene ontology
(Tuncay et al., 2006), and phylogenetic similarity analysis (Pazos
and Valencia, 2001). We have developed a TRN discovery system
that integrates all the above methods with a Bayesian integration
(Tuncay et al., 2006; Ortoleva, 2007; Qu and Ortoleva, 2008; Qu
et al., 2007; Sayyed-Ahmad et al., 2007; Sun et al., 2007).

The human cell has about 25,000 genes, yet it creates hundreds
of thousands of distinct proteins. This implies that there are a
similar number of distinct mRNAs. The gap in these numbers is
made up by splicing, i.e. transcription of a given gene creates one
pre-mRNA; then splicing cleaves this pre-mRNA and rejoins
segments to create multiple distinct mRNAs per gene. This
feature, known as alternative splicing (AS), allows the generation
of a large number of mRNA and protein isoforms from many fewer
genes. There is evidence that AS occurs in over 80% of human
genes, and at least 15%, and perhaps as many as 50%, of human
genetic diseases arise from AS abnormality (Matlin et al., 2005).
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Therefore, understanding the mechanisms AS regulation is of
great importance.

Studies on AS include identifying the proteins and other
molecules involved in splicing (Graveley, 2000; Matlin et al.,
2005; Stamm et al., 2005); locating exon and intron positions and
splicing regulator binding sites (Das et al., 2007; Graveley, 2000;
Matlin et al., 2005) (which are known as exon splicing enhancers
(ESEs) or silencers (ESSs) and intron splicing enhancers (ISEs) or
silencer (ISSs)); and delineating the mechanisms of how serine/
arginine rich (SR) proteins and heterogeneous nuclear ribonu-
cleoproteins (hnRNPs) bind to ESEs/ESSs/ISEs/ISSs and facilitate
recruiting spliceosomes, how spliceosomes are assembled, and
how AS eventually takes place (Graveley, 2000; Matlin et al.,
2005; Stamm et al., 2005).

Presently, pre-mRNA AS is considered to be regulated by a
group of splicing regulatory factors (SRFs), including SR proteins
and hnRNPs, and facilitated by small nuclear ribonucleoprotein
(snRNP) particles (splicesome). SRFs bind to regulatory sites on
pre-mRNA (ESE, ESS, ISE, or ISS) and help in recruiting spliceo-
some. If the splicesome’s recruitment enhances the exon inclusion
in a given type of mRNA, the SRFs are up-regulating the exon AS,
conversely if they inhibit the exon inclusion, the SRFs are down-
regulating. As in TRNs, it is reasonable to hypothesize the
existence of an alternative splicing regulatory network (SRN),
which contains a list of exons for each of which the SRFs up/down
regulating is provided. The SRN controls the way that pre-mRNA
is cleaved and rejoined to create the mRNAs. These proteins are
then processed into the enzymes and regulatory molecules that
underlie most cellular behavior. Therefore, the construction of an
SRN is critical in identifying abnormalities underlying the onset
and progression of cancer from a genome-wide perspective.

There has been a major investment in genome-wide exon
junction microarray profiling technologies (Castle et al., 2003;
Cuperlovic-Culf et al., 2006; Johnson et al., 2003; Xing et al.,
2006), and hundreds of thousands of exon AS are identified. Given
that exon microarrays monitor several hundred thousand mRNA
types simultaneously, we believed such data could reveal many
differences between normal and diseased cells; Due to the
vastness of the network and the lack of a reliable training set of
SRF/exon interactions, no software for reconstructing the network
of AS regulatory processes from exon array and other data have
been available. Here we present a SRN reconstruction algorithm
and an accompanying training set that we believe to be a first step
in automated SRN reconstruction. To appreciate the complexity of
the cellular control network and identify regulatory abnormalities
in AS, we developed a methodology to reconstruct networks of
SRF/exon regulatory interactions based an extensive analysis of
human exon junction microarray expression and conventional
gene expression profiles. In this paper, we construct an a priori

SRN using correlations between SRF/exon interactions and a
training set of experimentally verified data based on a hypothesis
that exons are regulated by same set of SRFs if their expression
profiles are highly correlated. Based on this a priori network and
exon junction and conventional gene microarray data, we create
the ‘‘AutoNet’’ analyzer to construct a final prediction of SRN with
minimum microarray inconsistency by generalizing our earlier
TRND system (Tuncay et al., 2006; Ortoleva, 2007; Qu et al., 2007;
Sayyed-Ahmad et al., 2007; Sun et al., 2007). Predicted AS
regulatory interactions are evaluated using a standard statistical
criterion. High quality predictions are archived in our alternative
splicing regulatory database available from our website (https://
ruby.chem.indiana.edu/�scorenfl/srn_results/lookup0.php).

Reconstructed SRNs, with hundreds of thousands of regulatory
interactions discovered, will provide insight into the role of AS in
carcinogenesis. As abnormality in the AS is one of the main
reasons for carcinogenesis initiation and onset/propagation of
other genetic diseases, regulatory network abnormalities of exons
and their specific regulatory SRFs are high-value therapeutic
targets in our search for the origins of cancer. In this way, we
believe that the proposed automated genome-wide SRN software
will enable a paradigm shift in our ability to identify targets that
minimize uncertainties due to indirect causes otherwise unde-
tected. Reconstructed SRNs, with hundreds of thousands of
regulatory interactions discovered, will provide specific insight
into the role of alternative splicing in carcinogenesis. The
networks created could be used to generate a refined diagnosis
and treatment regime, the latter involving multiple genes, drugs,
nutritional and other factors in an optimized balance. We believe
the accuracy and genome-wide character of our SRN-based
treatment design strategies will facilitate cancer research and
clinical practice. Potential strengths of this approach are that SRN
treatment discovery is genome-wide in scope, based on multiple
types of regulatory processes, fully automated, and integrates
multiple large datasets (e.g. exon array profiles, proteomics, and
clinical data). We believe the SRN-based treatment discovery
could avoid side-effects and resistance to treatment strategies
originally arrived at from an understanding of only one or a few
genes and other factors, while the complexity and scope of their
coupling to other genes across the wider cell regulatory network
was ignored.
2. Methods

2.1. Overview of SRN reconstruction algorithm

The extensive complexity of a human regulatory network and
the limited amount of validated AS and gene expression
regulatory information requires an extensive set of expression
data and multiple methodologies to arrive at a reconstructed
genome-wide SRN. Our methodologies are integrated by the
workflow of Fig. 1. The training set is assembled from
experimentally validated exon regulatory information (Table 1)
to provide minimal, but reliable, information on the structure of
the network. We use the correlation method, the training set, and
an extensive set of exon expression data to construct an a priori

network for normal human cells. There is presently limited direct
experimentally verified SRF/exon interaction information. Our
network reconstruction software AutoNet (Section 4) is used to
predict regulator (e.g. transcription factors or SRFs)/respond
element (e.g. genes or exons) interactions, based on an analysis
of respond element expression profiles (e.g. conventional gene or
exon expression microarray datasets). AutoNet contains a package
to minimize error due to the presence of noise in respond element
expression profiles. Details on our SRN reconstruction algorithm
and individual modules in Fig. 1 are as follows.
2.2. Exon data and experimentally verified AS regulatory

interactions

Exon–exon junction microarray data profile (GSE740) used
was obtained from NIH Gene Expression Omnibus (http://www.
ncbi.nlm.nih.gov/geo/). This dataset includes 50–54 sample types
across five chip patterns in five platforms (notably GPL543,
GPL544, GPL545, GPL546, and GPL547, see also Table 2). Some
sample types (e.g. brain, liver, and prostate) were conducted in all
the five chips, and some not (e.g. melanoma, lung carcinoma and
melanoma). To arrive at a united profile of exon expression levels
under different samples, we selected only those samples types
that were tested in all the five chips, and then integrated all the
exons into a single profile (Table 1). As summarized in Table 1, our

https://ruby.chem.indiana.edu/~scorenfl/srn_results/lookup0.php
https://ruby.chem.indiana.edu/~scorenfl/srn_results/lookup0.php
https://ruby.chem.indiana.edu/~scorenfl/srn_results/lookup0.php
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Fig. 1. Schematic workflow for SRN reconstruction. Experimental data used includes gene and exon expression microarray data and experimentally verified SRF/exon

interactions. A training set for AutoNet is constructed based on experimental data. AutoNet predicts splicing regulator factor activities, and a correlation method integrated

in AutoNet is used to predict regulator/respond element interactions.

Table 1
Summary of experimentally verified SRF/exon interactions.

Gene MAPT MATP MAPT SMN1 CASP9 EWSR1 BCL6 BRCA1 BRCA1 FGFR1

Exon 2 3 10 7 3, 4, 5, 6 2, 4, 5 1 5 18 1

SRp38 0 0 0 0 0 �1 0 0 0 0

ASF/SF2 0 �1 (1) 1 �1 0 0 0 1 0

SC35 �1 �1 �1 1 0 0 0 0 0 0

SRp20 0 �1 �1 1 0 0 1 0 0 0

SRp75 0 1 �1 1 0 0 0 0 0 0

SRp40 �1 0 �1 1 0 0 0 0 0 0

SRp55 �1 1 �1 1 0 0 0 �1 0 �1

9G8 0 0 �1 1 0 0 0 0 0 0

SRp30c �1 �1 (�1) 1 0 0 0 0 0 0

SRp54 0 0 �1 0 0 0 0 0 0 0

Tra2b �1 �1 1 1 0 0 0 0 0 0

U2AF 0 �1 �1 0 0 0 0 0 0 0

PTB �1 �1 �1 0 0 0 0 0 0 0

hnPNPG 0 0 �1 0 0 0 0 0 0 0

CELF3 �1 0 1 0 0 0 0 0 0 0

CELF4 1 0 1 0 0 0 0 0 0 0

SWAP 0 �1 �1 0 0 0 0 0 0 0

Nova1 1 �1 �1 0 0 0 0 0 0 0

hnRNPA1 0 �1 0 0 0 0 0 0 0 0

SLM1 1 1 �1 0 0 0 0 0 0 0

SLM2 1 1 �1 0 0 0 0 0 0 0

nPTB 1 0 0 0 0 0 0 0 0 0

KSRP �1 �1 �1 0 0 0 0 0 0 0

Up-regulation of the exon inclusion is indicated by +1 and down-regulation �1. 0 represents unknown regulation. Interaction in ( ) implies low confidence. Information

was gathered from the literature (Arikan et al., 2002; Kondo et al., 2004; Li et al., 2003; Mabon and Misteli, 2005; Wang et al., 2004; Wang et al., 2005; Wu et al., 2006).

Table 2
Summary of information content in exon data profiles used.

Exon expression profile Number of

genes

Number of

exons

Number of

sample types

GPL543 1230 13413 54

GPL544 2506 23107 50

GPL545 2648 2307 54

GPL546 2574 23107 52

GPL547 1319 12961 54

Integrated exon profile 10273 95695 47

All data were taken from NIH GEO GSE740.
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united exon expression profile contains 95,695 exons on 10,273
genes, all of which have expression levels in the 47 samples.
Experimentally verified AS regulations were gathered from the
literature and summarized in Table 1. While some details are
different between different human tissues or cell lines, we made
the hypothesis that many human tissues and cell lines share large
regions of a common TRN and SRN. Detailed data and sample
information are summarized in Appendix A.
2.3. Data pre-processing and a priori network reconstruction via

AutoNet

The first steps of our SRN reconstruction algorithm is to
normalize the exon expression profiles using conventional gene
microarray expression data and then construct a preliminary SRN
as a training set for final network reconstruction and quality
assessment. We focused on the SRFs as they were generally
believed to be key factors regulating splicing. We implemented an
algorithm to discover each exon’s regulation by a specific SRF
protein(s) and the sense (up/down) of each regulation. Our
algorithm constructs the quantity bgxf which, for simplicity here,
is 0 or 71 if exon x of gene g is non-activated or activated/
repressed by factor f. Let Cgxs be the measured exon expression
level of gene g, exon x in sample s. We defined g to be the
reference gene, i.e. Egs is the gene expression level for gene g in
sample s. With this, the ‘‘normalized expression level’’ cgxs is
defined via

cgxs ¼Cgxs=Egs ð1Þ

Using these normalized exon expression profiles, a training set
is constructed as follows. The algorithm is based on a hypothesis
that exons with highly correlated expression profile are regulated
by the same set of SRFs. Here we define correlation of two exons
(gene i exon j and gene k exon l) Cij;kl via

Cij;kl ¼
/ðcgixjs

�cgixj
Þðcgkxls

�cgkxl
ÞS

ygixj
ygkxl

ð2Þ

where cgixj
is the average expression of gene i, exon j over all the

samples, and / � � �S indicates an average over all samples and

y2
gixj
¼/ðcgixjs

�cgixj
Þ
2S ð3Þ

The training set is constructed by calculating correlations of
the expression of exons in Table 1 with those of all other exons. If
an exon’s profile is strongly correlated with one of those in
Table 1, it is assumed to be regulated similarly to that exon.
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Table 3
Gene expression datasets and normalized exon expression profiles.

Gene expression profile name Number of genes Number of exons Number of sample types

GDS1096 13341 NA 36

Normalized exon expression I 5655 57946 26

GDS596 13341 NA 79

Normalized exon expression II 5655 57946 31

GDS422 9143 NA 12

Normalized exon expression III 4668 49447 10

GDS1096, GDS596 and GDS422 are three gene expression datasets obtained from NIH GEO. These datasets contain 36, 79 and 12 cell samples, respectively. For example,

GDS1096 contains 36 cell samples, only 26 of which are also found in our original exon expression profile. We compare the exon expression and their correspondence gene

expression via Eq. (1) over these 26 common cell samples and generate a normalized exon expression I profile. Normalized exon expression II and III profiles are generated

in the same way.
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To carry out this procedure for a representative set of human
cell types, we use conventional gene expression profiles from NIH
GEO (Table 3). Similarly with expression profiles in Table 1, some
cell samples are conducted in both the conventional gene
expression and exon expression profiles, some are not. In order
to normalize the exon expression based on particular gene
expression profiles (here GDS1096, GDS596 and GDS422,
Table 3), only those cell types that are probed in both profiles
are selected. Therefore, based on the above three gene expression
profiles, we can generate three normalized exon expression
profiles, each corresponding to its gene expression dataset. We
use these three datasets to check the consistency of our
predictions.
2.4. Automated microarray-based network reconstruction (AutoNet)

AutoNet is our statistical regulatory-based module for auto-
matically reconstructing TRNs, SRNs or other networks, consisting
of a set of respond elements (e.g. expressing genes) and the factor
(e.g. transcription factors) that regulate them. AutoNet is a
generalization of our earlier software FTF (Tuncay et al., 2006;
Qu et al., 2007; Sayyed-Ahmad et al., 2007; Sun et al., 2007)
designed to reconstruct the TRN from a training set of promoter
site transcription factor regulatory interactions and profiles of
gene expression. Similarly, AutoNet uses a training set of
regulatory factor/respond element interactions and related micro-
array profiles to generate the network of regulator/responder
interactions. The input array data are a list of respond elements
for each of which the respond expression profile over the various
conditions or sample types are provided. The output regulatory
network is a list of respond elements, for each of which the
regulators and the sense (up/down) of the regulation are
specified. Thus, AutoNet with a preliminary SRN training set and
exon expression microarray profiles can be used to reconstruct a
richer SRN that incorporates the possibility of multiple splicing
regulator interactions, each of a large set of regulating given
respond elements.

The input to AutoNet is an a priori network and respond
elements’ expression profiles. The output is suggestions for
improving the network, and predicted profiles for regulator
activities across the set of conditions/samples. AutoNet is based
on the following notions:
�
 microarray expression as well as exon expression profile
data are usually error-prone and only semi-quantitative;
thus a consensus method is needed whereby results from a
variety of genes are synthesized to derive information on a
given gene;

�
 a method based on regulators has the advantage that

microarray noise and errors in given training set can be
overcome by statistics—i.e. the regulation of many respond
elements through a given regulator, or a small subset thereof;

�
 due to data uncertainty, it is usually not likely (except in rare

cases where hundreds of microarrays are available) that there
is enough information to obtain both regulatory network
structure and the associated transcription and RNA degrada-
tion rate coefficients simultaneously; and

�
 network discovery requires many automated trials of possible

networks so the algorithm must be extremely efficient.

Thus the objective of AutoNet is to discover regulatory network
structure by taking advantage of the statistical robustness
allowed by a regulator-based analysis.

The essential AutoNet equations are as follows. Taking
construction of a TRN for an example, consider a system with Ng

genes. Then,

Tr
n�Ts

n ¼
XNg

i ¼ 1

Hðmr
i�ms

i ÞbinCin ð4Þ

Tr
n the activity of TF n at condition or time r, mr

i the cDNA
microarray response for gene i at condition r, bin the regulatory
network matrix (bin4 or o0 for gene i up/down regulated by TF
n, bin=0 for no regulation)

H(x)= 71 for x4 oro0,=0 for x=0

Cin ¼ normalized weightFe:g:Cin ¼
2Li

2Li�1
�

1

Mn
ð5Þ

for Li=number of TFs regulating gene i, and Mn is a normalized
factor that is the number of genes TF n regulates.

The advantage of this analysis is that the Tr
n are obtained

directly, i.e. no differential equations for them must be solved. The
statistical weight Cin accounts for the likelihood that a gene
controlled by many TFs will not reflect the activity of any one of
them. Finally,

PNi

i ¼ 1 Cin ¼ 1, i.e. Cin has the character of a
normalized probability.

One can compute Tr
n for TF n from one of the genes it regulates

by keeping the Tr
n0 ðn

0anÞ as obtained above. The correlation of
this Tr

n and the one constructed as above gives a measure of how
well the regulation of gene i by TF n is characterized by bin. Such
considerations are the basis of the gene ranking in AutoNet. As
AutoNet is fast, many alternatives bin can be tested and
improvements on the a priori regulatory network are suggested.

AutoNet had been successfully applied to reconstruct bacterial
and mammalian TRNs (Tuncay et al., 2006; Qu et al., 2007;
Sayyed-Ahmad et al., 2007; Sun et al., 2007), and consists one of
the key approaches we used in our TRN discovery system (https://
systemsbiology.indiana.edu/trnd/pages/menuMain.php). In the
present study, we expend AutoNet and applied it to SRN
reconstruction using exon array data normalized as described
above. As demonstrated in our earlier studies (Tuncay et al., 2006;

https://systemsbiology.indiana.edu/trnd/pages/menuMain.php
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Qu et al., 2007; Sayyed-Ahmad et al., 2007; Sun et al., 2007), this
can yield a genome-wide regulatory network. However, the
earlier version of AutoNet was designed for networks involving
a few thousand of respond elements. In contrast for alternative
splicing regulation there are effectively hundreds of thousands of
respond elements. Therefore, we developed a data/array healing
framework optimized for extremely large networks, training sets,
and array datasets. We integrated a correlation method for
generating large set of SRN predictions with the previous version
of AutoNet.

Correlation of predicted regulator activity with exon expres-
sion over all the samples is calculated. Here we define correlation
of splicing regulator n activity Ts

n and exons (gene i exon j)
expression cgixjs

over all the sample s as Cn;ij

Cn;ij ¼
/ðTs

n�T
s

nÞðcgixjs
�cgixj

ÞS

ynygixj

ð6Þ

where T
s

n is the average activity of regulator n over all the samples
and yn is defined as

y2
n ¼/ðTs

n�T
s

nÞ
2S ð7Þ

and average is taking over all the samples.

2.5. SRN prediction

For each normalized exon expression profiles (I, II and III in
Table 3), we can predict SFR/exon interactions by comparing their
correlation Cn;ij with a threshold correlation Cth.

If Cn;ijZCth then we say SRF n up-regulate gene i exon j, and
bn;ij ¼ 1

If Cn;ijr�Cth then we say SRF n down-regulate gene i exon j,
and bn;ij ¼�1

Otherwise we say there is no apparent regulation.

2.6. Confidence measure

We hypothesize that a viable measure of confidence is the
absolute value of the sum of the correlation from all SRNs, which
in our case 3. Suppose we have M source data sets and generate M

SRNs, and because of the nonuniformity of the array data used to
generate the SRNs, for a given SRF/exon pair there maybe 02M

predictions. Suppose there are Ntotal;n;ij SRNs predict an interaction
of a specific SRF n/gene i exon j (either + or �). We define a
confidence of a prediction Qn;ij as

Qn;ij ¼

�����
XNtotal;n;ij

m ¼ 1

Cn;ij;m

����� ð8Þ

where Cn;ij;m is the predicted correlation of SFR n and gene i exon j

expression in SRN m. In our case, for any prediction, Ntotal;n;ij is
larger or equals to 1 and smaller or equals to M, which is 3. For
each prediction, there is a confidence to evaluate its reliability.
We set a confidence threshold value Qth. If Qn;ijZQth then we say
the regulatory interaction prediction is a high quality prediction.
Table 4
SRNs I, II, and III are generated based on an analysis of normalized exon expression pr

Predicted SRN Number of genes Number of

SRN I 3074 13911

SRN II 4465 29101

SRN III 4186 28265

Our methodology predicts 169 737, 169 974, and 157 436 high quality regulatory interac

ruby.chem.indiana.edu/�scorenfl/srn_results/lookup0.php.
3. Results

3.1. High quality splicing regulatory predictions

A predicted SRN is a list of exons for each of which a list of
splicing regulator factors’ (SRFs’) up/down regulation is provided.
A high quality regulatory prediction is a prediction with high
confidence (defined in METHODS VI). Those predictions are
archived in a database available at our website: https://ruby.
chem.indiana.edu/�scorenfl/srn_results/lookup0.php. High qual-
ity predictions of splicing regulatory interactions and statistics of
the predicted SRNs are provided in Table 4.

To assess the confidence threshold value Qth that we consider a
prediction to be a high quality prediction, we display a probability
density distribution of confidence for all predictions (Fig. 2(a)).
We set the correlation threshold Cth ¼ 0, therefore for any SRF/
exon, there is a prediction. From Fig. 2(a), it is clear that when
confidence is low, from 0 to 0.8, the density is high and does not
change much, which means at low confidence, interactions are
almost equally distributed. A significant density drop happens
when confidence increases from 0.8 to 1.75, and the change is
very steep; when a confidence is above 1.75, the density only
changes slightly. A lower confidence percentage function AðQn;ijÞ is
defined such that

AðQn;ijÞ ¼ percentage of interactions whose confidence is

rQn;ij ðFig: 2ðbÞÞ

We chose our confidence threshold Qth ¼ 1:24, the point at which
the probability of confidence changes most rapidly (Fig. 2(c)).
From Fig. 2(b), it is seen that our high quality predictions, whose
confidence Qn;ijZQth, is the best 12% over all the predictions.

Predictions of SRF/exon interactions in SRN I, II and III are not
always the same. If a prediction bn;ij (SRF n, gene i exon j) in SRN I
equals that in SRN II, we say that predictions of SRF n/gene i exon j

interaction in SRN I and SRN II are consistent, otherwise it is
considered as inconsistent. A concept of consistency includes two
aspects: (1) predictions of SRF n/gene i exon j interaction are
made in both or all SRNs; and (2) their predictions agree. A
prediction that is consistent in two SRNs is more reliable than that
which is not consistency in any pair SRNs, and predictions that are
consistent in all three SRNs have the highest reliability.

In our case, for any prediction in SRNs, it could be +1, �1 or 0,
therefore there are 26 possibilities (exclude of 0, 0, 0). With all the
possibilities, there are five categories, which are (I) the interaction is
only predicted in one SRN; (II) the interaction is predicted in two
SRNs and their predictions agree; (III) the interaction is predicted in
two SRNs and their predictions disagree; (IV) the interaction is
predicted in three SRNs and their predictions agree (most reliable);
(V) the interaction is predicted in three SRNs and predictions in two
SRNs agree, but disagree with that in the third SRN. Relative
amounts of interactions in each category are shown in the pie chart
below. Fig. 3 contains two pie charts, which show the percentages
of interactions in each category in all the predictions with no
confidence restriction, and in high quality predictions.
ofiles I, II and III, respectively (Table 3).

exons Total number

of predictions

Number of high

quality predictions

1069 854 169737

1078 808 169974

1064 234 157436

tions for SRNs I, II, and III. We archived our predictions on our web portal: https://

https://ruby.chem.indiana.edu/~scorenfl/srn_results/lookup0.php
https://ruby.chem.indiana.edu/~scorenfl/srn_results/lookup0.php
https://ruby.chem.indiana.edu/~scorenfl/srn_results/lookup0.php
https://ruby.chem.indiana.edu/~scorenfl/srn_results/lookup0.php
https://ruby.chem.indiana.edu/~scorenfl/srn_results/lookup0.php
https://ruby.chem.indiana.edu/~scorenfl/srn_results/lookup0.php
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From Fig. 3, we see, (1) within all the predictions, only 32.78% of
all the interactions are the most reliable (category IV), while in
high quality interactions, this percentage increases to 87.52%; (2)
inconsistent prediction (categories III and V) consists 3.38%+
36.49%=39.87% in all the predictions, but only 4.96% in high quality
predictions. A higher consistent rate as well as a low inconsistent rate
in high quality predictions showing a threshold of prediction
confidence control does improve the quality of predictions.
3.2. Predictions with higher correlation are more likely to be reliable

Correlation methods have been widely used in statistics to
indicate specific relationships between variables, notably in TF/
gene regulation (Tuncay et al., 2006; Sayyed-Ahmad et al., 2007;
Sun et al., 2007). We use a correlation approach to predict SRF/
exon interactions. However, whether a higher correlation will
result in a higher reliability, higher confidence and therefore a
better prediction still is not demonstrated. Before we answer this
question, we first define an average confidence

Q ¼

�����
Xq
x;xþ dx
total

q ¼ 1

Q

����� ð9Þ

For every interaction, we will have M correlation values Cn;ij;m

and a confidence value Qn;ij assigned to evaluate its reliability,
exclusive the interactions in the training set. Suppose there are
dqx;xþdx

total interactions whose absolute value of the correlations lies
between x and x7dx, what is the average confidence of these
dqx;xþdx

total interactions? And does this average confidence increase
as absolute correlation increases?
From Fig. 4, it is seen that the higher the absolute correlation
is, the higher the confidence, and therefore the better the
prediction. Thus a prediction with higher correlation is more
likely to be reliable. We set a quality control thresh value
Qth ¼ 1:24 to distinguish between a high and low quality
prediction. From Fig. 4, we see when absolute correlation range
is 0.70–0.75, the absolute correlation of a prediction lies between
0.70 and 0.75, on average, and its confidence is at �1.24. Thus, it
is reasonable for us to set a threshold on correlation Cth ¼ 0:75.
When a prediction has an absolute correlation larger than 0.75, it
is very likely that its confidence is larger than 1.24, and therefore
very likely to be a high quality prediction. The determination of a
cutoff correlation indicating a high quality prediction is critical for
applying our methodology and assessing the reliability of
predictions made by new datasets. From Fig. 4, we see 0.75 is a
reasonable cutoff.

We can only make a statement that ‘‘a prediction with higher
correlation is more likely to be a better prediction’’, and not assert
that ‘‘a prediction with higher correlation is a better prediction’’. It
is possible that exceptional cases exist such as two interactions
bn1;ij and bn2;ij, the absolute correlation of bn1;ij is larger than
that of bn2;ij, but the confidence of predicted interaction bn1;ij is
less than that of bn2;ij. Two likely origins of exceptions could be
errors in the input array data, and violations of our regulatory
model. However, if our method is reliable, these exceptional cases
should be statistically insignificant. In this study, we predicted
169,975 SRF/exon high quality interactions. Within all the
pairs of predictions, 96.4% pairs of interactions are normal, which
means the absolute correlation of one interaction is greater/less
than the other and so is the confidence. Only 3.6% pairs are
exceptional.
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3.3. Higher threshold results in better predictions

As discussed in Methods, we use a threshold Cth to determine
whether a given interaction prediction is reliable, and we see from
Fig. 4 that 0.75 is a reasonable choice. However, whether or not an
increase of threshold Cth results in better predictions still remain
to be demonstrated. Suppose at a fixed threshold Cth, we found
Itotal interactions are predicted in all three SRNs, and we compute
an average confidence Q ðCthÞ via the following equation

Q ðCthÞ ¼
1

Itotal

XItotal

i ¼ 1

Qi ð10Þ

From Fig. 5, we see the larger the correlation threshold, the
higher the average confidence, therefore the more reliable the
predictions. A high quality prediction requires a confidence larger
than 1.24 (as defined above), and from Fig. 5, we see, average
confidence 1.24 lies between correlation threshold of 0.70–0.75,
similar to Fig. 4, we conclude that a cutoff on correlation at 0.75 is
reasonable, so that a prediction whose absolute correlation is
larger than 0.75 is very likely to be a high quality prediction.

Probability distribution for different thresholds is shown in
Fig. 6. It is seen that an increase of correlation threshold results in
better predictions by increasing the probability density of higher
confidence interactions, and decreasing that of the lower
confidence ones.
3.4. Increase confidence yields agreement between SRNs

reconstructed from data of different platforms

To assess the relationship between SRNs constructed from one
dataset versus another, we constructed correlation diagrams of
SRN I and SRN II, and SRN II and SRN III. Fig. 7 shows the
correlation of non-quality screened predictions (frames a and c)
and high quality predictions (frames b and d) in SRN I, II and III.
SRN I and II are generated via normalized exon expressions I and
II. The normalization of exon expressions I and II uses
conventional gene expressions GDS1096 and GDS596, and both
were conducted on a same platform GPL96. Fig. 7(a) shows the
similarity between SRN I and II as assessed by a correlation
diagram of their non-quality screened predictions in two aspects:
(1) most predictions exist in the first and third quadrants
(consistent predictions), and there are much fewer in the
second and forth quadrants (inconsistent predictions); (2) the
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Fig. 5. Average confidence as a function of correlation threshold value.
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higher the absolute value of the correlations, the more likely that
the predictions are consistent (i.e. lie on a 45-degree line),
conversely, the smaller the correlation, the greater the
displacement from the 45-degree line. After we set a threshold
value on the confidence, high quality predictions are selected and
points cluster close to the 45-degree line, shown in Fig. 7(b). We
see most of the high quality predictions cluster in the first and
third quadrants, and therefore low quality predictions are
Fig. 7. (a) Correlation of non-quality screened predictions between SRN I and II; (b) corr

increases, the correlation between predictions from different datasets improves; (c)

correlation of high quality predictions between SRN II and III. Showing that even when

when confidence is high. The x-axes are the correlation predicted in one SRN, and the
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Fig. 6. Probability density distribution of confidence under correlation threshold 0

(circle), 0.3 (square), and 0.75 (triangle). The x-axis is confidence, and the y-axis is

probability density.
effectively screened out by assign this threshold value on
confidence. However, since SRNs I and II were constructed using
a similar conventional microarray platform, this improvement is
not surprising. The question still remains regarding correlation of
SRNs constructed using data from different platforms, and the
ability of our methodology to screen out low quality predictions
to arrive at similar networks using data from different platforms
still needs to be demonstrated. SRN II and SRN III are constructed
from different platforms. The conventional gene microarray used
in normalizing the exon expression that generates SRN III is
GDS422, which was conducted on platform GPL91, different from
that of GDS1096 (SRN I) and GDS596 (SRN II). As seen from
Fig. 7(c), SRN II and SRN III are not similar: low quality prediction
resided in all four quadrants, and there are many in the second
quadrant, which represents a negative regulation predicted in
SRN II, but a positive regulation predicted in SRN III. High quality
predictions are more consistent as is shown in Fig. 7(d). The
majority of high quality predictions are located in the first and
third quadrants. This shows our methodology arrived at
essentially the same SRN even when different array platforms
were used (i.e. the technologies and our approach capture the
underling biology).
3.5. Assessing the reliability of applying the method to a new dataset

Our methodology can be applied to reconstructed SRNs via
new datasets is demonstrated in Section 4, we now explore the
use of our findings to address the reliability of predictions on a
new system and associated sets of array data. In particular, can
the reliability cut off determined in the above exploratory study
be transferred to be the cut off on the single dataset prediction?
To establishing the cut off is a complex issue, however if the new
elation of high quality prediction between SRN I and II. Showing that as confidence

correlation of non-quality screened predictions between SRN II and III and (d)

SRNs constructed using different platforms (GPL96 versus GPL91), they still agree

y-axes are those of the same interaction predicted in the other SRN.
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dataset is comparable in accuracy, richness, and number of arrays
to one of those in the above exploratory study, then we expect a
similar confidence density distribution as presented in Section 1.
Therefore, as we discussed in Sections 2 and Section 3, 0.75 is a
reasonable absolute correlation cut off, in order to keep an
average confidence of high quality predictions above a critical
value of 1.24 (corresponding to the top 12%). Another cut off could
be obtained by retaining only the top 12% highest correlation
predictions.
4. Discussion

4.1. Innovation of our array-based reconstruction methodology

Given that genes encode all the information needed to run a
cell, there has been a tremendous investment in understanding
the biological function of each of the roughly 25,000 human genes
and their encoding proteins based on total RNA and exon
microarray technologies. Early attempts to interpret this data
were based on gene–gene network and other highly simplified
models (Chang et al., 2008; Chen et al., 2006; Gardner et al., 2003;
Gutierrez-Rios et al., 2003; Huang et al., 2007; Li et al., 2004; Sano
et al., 2006; Zhou et al., 2005; Zou and Conzen, 2005). While they
are clear key parts of a cancer research strategy, we suggest that it
is equally important to understand the genome-wide system of
molecular signals that leads to normal versus abnormal patterns
of gene and exon expressions. In our earlier work (Tuncay et al.,
2006; Qu and Ortoleva, 2008; Qu et al., 2007; Sayyed-Ahmad
et al., 2007; Sun et al., 2007) we deliver computational system
biology technologies for reconstructing the network of processes
regulating gene expression, and for the identification of gene
regulatory subnetworks underlying the onset and progression of
cancer. In this effort, we make a major advance in network
discovery technology via constructing SRN based on gene and
exon microarray analysis. Our unique methodology takes gene
and exon microarray profiles as input and automatically gen-
erates alternative splicing regulatory processes as output. In
comparing to other methodologies in reconstructing SRN via a
sequence analysis (Modrek and Lee, 2002; Stamm et al., 2006;
Takeda et al., 2007; Thanaraj et al., 2004), our methodology is
unique in three aspects: (1) our methodology meets the great
challenge in analyzing massive available microarray profiles; (2)
our predictions are on a genome-wide perspective and therefore
not limited to a few genes, exons or SRFs; and (3) our results will
enable the computer-aided diagnosis and treatment of cancer by
comparing hundreds of thousands of regulatory interactions in
normal versus abnormal cells.
4.2. Assessment of the methodology

The methodology developed in this paper is based on several
basic hypotheses: (1) SRN can be reconstructed based on available
experimentally verified SRF/exon interactions and gene and exon
microarray expression profiles; (2) higher confidence results in
better predictions, and a threshold on confidence screens out low
quality predictions; (3) a threshold value on confidence could be
transferred to a threshold value on single correlation, and a higher
correlation results in better prediction. These hypotheses are the
rationale for our methodology and they were all validated in this
paper and our earlier studies (Tuncay et al., 2006; Qu and
Ortoleva, 2008; Qu et al., 2007; Sayyed-Ahmad et al., 2007; Sun
et al., 2007). Our methodology yields genome-wide SRF/exon
regulatory networks. Using our novel SRN reconstruction meth-
odology and widely available gene microarray profiles with the
limited experimentally verified training set of SRF/exon interac-
tions, we predict genome-wide SRF/exon regulatory interactions.
The SRNs we created also provide reliability scores (confidence)
for all possible SRF/exon interactions. The higher the confidence
scores the more reliable the prediction.

4.3. Genome-wide SRN reconstruction and its potential application

The development of strategies for preventing, diagnosing, and
treating cancer and other diseases would be greatly facilitated by
the availability of technologies for reconstructing the network
regulating normal and abnormal cellular processes. Major con-
trols on cellular activity are TF/gene interactions and SRF/exon
interactions. The former controls the rate at which genes are
transcribed into RNAs, while the latter controls the way that RNAs
are cleaved and rejoined to create the mRNAs that are translated
into proteins. The proteins are processed into the enzymes and
regulatory molecules that underlie much of cellular behavior.
Earlier we have shown that a key aspect of cancer is the existence
of subnetworks of genes, the cross-talk among which can lead to
runaway feedback we believe underlies the onset and progression
of cellular abnormalities (Qu et al., 2007). To appreciate the
complexity of the cellular control network, and the challenge that
we face in identifying abnormalities in it that underlie cancer
onset and progression, we developed methodologies that recon-
structs genome-wide TRNs (Tuncay et al., 2006; Sayyed-Ahmad
et al., 2007; Sun et al., 2007), and in this paper SRNs.
Reconstructing networks of TF/gene and SRF/exon regulatory
interactions are the first step before one can reliably identify the
patient-specific cause of cancer onset and progression, and
minimize uncertainty due to indirect causes otherwise missed
in the millions of processes regulating the genome-wide network.
As cancer involves an abnormality in the cellular regulatory
network, genes/exons and the TFs/SRFs proteins that interact with
them are high-value targets for therapeutic intervention and our
search for the origins of cancer. In this way, we believe that our
methodology will be a paradigm shift in identifying targets via
this automated, genome-wide approach. Furthermore we believe
the treatment that could be discovered will avoid adverse side-
effects which would have been arrived at from an understanding
of only one or a few genes and other factors, when the complexity
and scope of their coupling to other genes across the wider cell
regulatory network is ignored.
5. Conclusion

In this study, a unique methodology that constructs genome-
wide alternative splicing regulatory networks (SRN) based on an
analysis of exon and gene microarray expression profiles was
presented. The rationale for the methodology is tested by
statistical analyses of the predictions. Each prediction is assigned
a confidence, which indicates its reliability. All predictions
together with their confidence values are archived on our website:
https://ruby.chem.indiana.edu/�scorenfl/srn_results/lookup0.php.
Contrasting SRNs reconstructed using array data from normal
versus diseased tissues, this methodology could identify splicing
regulatory abnormalities underlying cancer and other diseases.
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